GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Royal Meteorological Society  (2)
  • 2020-2024  (2)
  • 2000-2004
Document type
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: Northern Europe and the UK experienced an exceptionally warm and wet winter in 2019/20, driven by an anomalously positive North Atlantic Oscillation (NAO). This positive NAO was well forecast by several seasonal forecast systems, suggesting that this winter the NAO was highly predictable at seasonal lead times. A very strong positive Indian Ocean dipole (IOD) event was also observed at the start of winter. Here we use composite analysis and model experiments, to show that the IOD was a key driver of the observed positive NAO. Using model experiments that perturb the Indian Ocean initial conditions, two teleconnection pathways of the IOD to the north Atlantic emerge: a tropospheric teleconnection pathway via a Rossby wave train travelling from the Indian Ocean over the Pacific and Atlantic, and a stratospheric teleconnection pathway via the Aleutian region and the stratospheric polar vortex. These pathways are similar to those for the El Niño Southern Oscillation link to the north Atlantic which are already well documented. The anomalies in the north Atlantic jet stream location and strength, and the associated precipitation anomalies over the UK and northern Europe, as simulated by the model IOD experiments, show remarkable agreement with those forecast and observed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: An ensemble of idealized experiments with the simplified general circulation model PUMA is used to analyze the response to reduced surface friction, that is a strengthening of the eddy-driven jet, a weakening of the Eulerian mean overturning, and a suppression of baroclinic instability. The suppression of baroclinic instability is caused by an effect called the barotropic governor by which increased horizontal shear restricts the ability of baroclinic disturbances to convert available potential energy into kinetic energy. This governor effect ensures that the residual circulation and Eliassen–Palm flux (EP flux) divergence are largely invariant to the surface friction parameter despite the connection between surface friction, the Eulerian mean overturning, and the eddy-momentum flux. The suppression of instability leads to an increase in persistence measured by the period of peak variance on synoptic time-scales and a strengthened signal-to-noise ratio on seasonal time-scales. These findings suggest that the signal-to-noise paradox seen in the context of seasonal prediction can be caused by excess mechanical damping in atmospheric prediction systems inhibiting the barotropic governor effect.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...