GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (18)
  • 2005-2009  (51)
Document type
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hansen, Per Juel; Lundholm, Nina; Rost, Björn (2007): Growth limitation in marine red-tide dinoflagellates: effects of pH versus inorganic carbon availability. Marine Ecology Progress Series, 334, 63-71, https://doi.org/10.3354/meps334063
    Publication Date: 2023-07-07
    Description: The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for experiments were 8.55 for C. lineatum and 9.2 for the other 2 species. At pH 8.0, which approximates the pH found in the open sea, the maximum growth in all species was maintained until the total DIC concentration was reduced below ~0.4 and 0.2 mM for C. lineatum and the other 2 species, respectively. Growth compensation points (concentration of inorganic carbon needed for maintenance of cells) were reached at ~0.18 and 0.05 mM DIC for C. lineatum and the other 2 species, respectively. At higher pH levels, maximum growth rates were lower compared to growth at pH 8, even at very high DIC concentrations, indicating a direct pH effect on growth. Moreover, the concentration of bio-available inorganic carbon (CO2 + HCO3-) required for maintenance as well as the half-saturation constants were increased considerably at high pH compared to pH 8.0. Experiments with pH-drift were carried out at initial concentrations of 2.4 and 1.2 mM DIC to test whether pH or DIC was the main limiting factor at a natural range of DIC. Independent of the initial DIC concentrations, growth rates were similar in both incubations until pH had increased considerably. The results of this study demonstrated that growth of the 3 species was mainly limited by pH, while inorganic carbon limitation played a minor role only at very high pH levels and low initial DIC concentrations.
    Keywords: Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Ceratium lineatum; Chromista; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Growth/Morphology; Hansen_etal_07/F1; Hansen_etal_07/F2; Laboratory experiment; Laboratory strains; Myzozoa; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Pelagos; Phytoplankton; Prorocentrum minimum; Single species
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-16
    Description: The project AWI-funded AMUST project aims at understanding at current and future controls of Arctic spring blooms and concurrrent effetcs on biogeochemistry,by combining experimental work with long-term monitoring in April and May each year to study the Kongsfjorden spring bloom. This dataset was also used in the FAABulous project to compare spring bloom phenology in open-water and ice-covered fjords. Environmental as well as biological (stoichiometry and photosynthesis) data from the years 2014, and 2016-2018 for the mid-fjord station KB3 were samples. Furthermore, daily average temperature and salinity from a nearby mooring (see Hop et al. 2019 for details) are provided for the study period.
    Keywords: Active mixing layer depth; AMUST; Arctic; Arctic phytoplankton under MUltiple STressors; AWIPEV; AWIPEV_2016-AMUST; AWIPEV_2016-AMUST_KB3; AWIPEV_2017-AMUST; AWIPEV_2017-AMUST_KB3; AWIPEV_2018-AMUST; AWIPEV_2018-AMUST_KB3; Calculated from discrete Chl-specific light limited slopes of PI curves; Calculated from discrete spherical 4pi sensor profiles; Campaign; Chlorophyll a; Chlorophyll a, integrated; DATE/TIME; Depth with 1% of photosynthetic active radiation; Dimethylsulfoniopropionate, integrated; Event label; FAABulous; FAABulous: Future Arctic Algae Blooms and their role in the context of climate change; inorganic nutrients; Kongsfjorden; KOP151; Light attenuation, vertical; Light-depended increase in 14C uptake; MON; Monitoring; Net primary production of carbon, integrated; Nitrate, integrated; Phytoplankton; primary production; Station label; Water samples
    Type: Dataset
    Format: text/tab-separated-values, 326 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for experiments were 8.55 for C. lineatum and 9.2 for the other 2 species. At pH 8.0, which approximates the pH found in the open sea, the maximum growth in all species was maintained until the total DIC concentration was reduced below ~0.4 and 0.2 mM for C. lineatum and the other 2 species, respectively. Growth compensation points (concentration of inorganic carbon needed for maintenance of cells) were reached at ~0.18 and 0.05 mM DIC for C. lineatum and the other 2 species, respectively. At higher pH levels, maximum growth rates were lower compared to growth at pH 8, even at very high DIC concentrations, indicating a direct pH effect on growth. Moreover, the concentration of bio-available inorganic carbon (CO2 + HCO3-) required for maintenance as well as the half-saturation constants were increased considerably at high pH compared to pH 8.0. Experiments with pH-drift were carried out at initial concentrations of 2.4 and 1.2 mM DIC to test whether pH or DIC was the main limiting factor at a natural range of DIC. Independent of the initial DIC concentrations, growth rates were similar in both incubations until pH had increased considerably. The results of this study demonstrated that growth of the 3 species was mainly limited by pH, while inorganic carbon limitation played a minor role only at very high pH levels and low initial DIC concentrations.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Caratium lineatum; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Density, mass density; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Hansen_etal_07/F1; Heterocapsa triquetra; Infrared gas analyser (ADC, MK3); Laboratory experiment; Laboratory strains; Light:Dark cycle; Measured; Myzozoa; PAR sensor LI-1000, LI-COR Inc.; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH meter (Sentron, Argus X); Phytoplankton; Prorocentrum minimum; Radiation, photosynthetically active; Salinity; Single species; Species; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1349 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Description: The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for experiments were 8.55 for C. lineatum and 9.2 for the other 2 species. At pH 8.0, which approximates the pH found in the open sea, the maximum growth in all species was maintained until the total DIC concentration was reduced below ~0.4 and 0.2 mM for C. lineatum and the other 2 species, respectively. Growth compensation points (concentration of inorganic carbon needed for maintenance of cells) were reached at ~0.18 and 0.05 mM DIC for C. lineatum and the other 2 species, respectively. At higher pH levels, maximum growth rates were lower compared to growth at pH 8, even at very high DIC concentrations, indicating a direct pH effect on growth. Moreover, the concentration of bio-available inorganic carbon (CO2 + HCO3-) required for maintenance as well as the half-saturation constants were increased considerably at high pH compared to pH 8.0. Experiments with pH-drift were carried out at initial concentrations of 2.4 and 1.2 mM DIC to test whether pH or DIC was the main limiting factor at a natural range of DIC. Independent of the initial DIC concentrations, growth rates were similar in both incubations until pH had increased considerably. The results of this study demonstrated that growth of the 3 species was mainly limited by pH, while inorganic carbon limitation played a minor role only at very high pH levels and low initial DIC concentrations.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Caratium lineatum; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Counted in Sedgewick-Rafter chamber; Density, mass density; Dinoflagellates; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Hansen_etal_07/F2; Heterocapsa triquetra; Infrared gas analyser (ADC, MK3); Laboratory experiment; Laboratory strains; Light:Dark cycle; Measured; Myzozoa; PAR sensor LI-1000, LI-COR Inc.; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH meter (Sentron, Argus X); Phytoplankton; Prorocentrum minimum; Radiation, photosynthetically active; Salinity; Single species; Species; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1040 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-16
    Description: The project AWI-funded AMUST project aims at understanding at current and future controls of Arctic spring blooms and concurrrent effetcs on biogeochemistry,by combining experimental work with long-term monitoring in April and May each year to study the Kongsfjorden spring bloom. This dataset was also used in the FAABulous project to compare spring bloom phenology in open-water and ice-covered fjords. Environmental as well as biological (stoichiometry and photosynthesis) data from the years 2014, and 2016-2018 for the mid-fjord station KB3 were samples. Furthermore, daily average temperature and salinity from a nearby mooring (see Hop et al. 2019 for details) are provided for the study period.
    Keywords: AMUST; Arctic; Arctic phytoplankton under MUltiple STressors; AWIPEV; AWIPEV_2016-AMUST; AWIPEV_2016-AMUST_KB3; AWIPEV_2017-AMUST; AWIPEV_2017-AMUST_KB3; AWIPEV_2018-AMUST; AWIPEV_2018-AMUST_KB3; Calculated from discrete Chl-specific light limited slopes of PI curves; Calculated from discrete spherical 4pi sensor profiles; Campaign; Chlorophyll a; Chlorophyll a, integrated; DATE/TIME; Depth with 1% of photosynthetic active radiation; Dimethylsulfoniopropionate, integrated; FAABulous; FAABulous: Future Arctic Algae Blooms and their role in the context of climate change; inorganic nutrients; Kongsfjorden; KOP151; Light attenuation, vertical; Light-depended increase in 14C uptake; Mixed layer depth; MON; Monitoring; Net primary production of carbon, integrated; Nitrate, integrated; Phytoplankton; primary production; Station label; Water samples
    Type: Dataset
    Format: text/tab-separated-values, 339 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trimborn, Scarlett; Wolf-Gladrow, Dieter A; Richter, Klaus-Uwe; Rost, Björn (2009): The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms. Journal of Experimental Marine Biology and Ecology, 376(1), 26-36, https://doi.org/10.1016/j.jembe.2009.05.017
    Publication Date: 2024-03-15
    Description: The effect of pCO2 on carbon acquisition and intracellular assimilation was investigated in the three bloom-forming diatom species, Eucampia zodiacus (Ehrenberg), Skeletonema costatum (Greville) Cleve, Thalassionema nitzschioides (Grunow) Mereschkowsky and the non-bloom-forming Thalassiosira pseudonana (Hust.) Hasle and Heimdal. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3? uptake rates were measured by membrane-inlet mass spectrometry (MIMS) in cells acclimated to pCO2 levels of 370 and 800 ?atm. To investigate whether the cells operate a C4-like pathway, activities of ribulose-1,5-bisphosphate carboxylase (RubisCO) and phosphoenolpyruvate carboxylase (PEPC) were measured at the mentioned pCO2 levels and a lower pCO2 level of 50 ?atm. In the bloom-forming species, extracellular CA activities strongly increased with decreasing CO2 supply while constantly low activities were obtained for T. pseudonana. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution decreased with decreasing CO2 supply in the two bloom-forming species S. costatum and T. nitzschioides, but not in T. pseudonana and E. zodiacus. With the exception of S. costatum, maximum rates (Vmax) of photosynthesis remained constant in all investigated diatom species. Independent of the pCO2 level, PEPC activities were significantly lower than those for RubisCO, averaging generally less than 3%. All examined diatom species operate highly efficient CCMs under ambient and high pCO2, but differ strongly in the degree of regulation of individual components of the CCM such as Ci uptake kinetics and extracellular CA activities. The present data do not suggest C4 metabolism in the investigated species.
    Keywords: Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Bicarbonate uptake; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated after Freeman & Hayes (1992); Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; EPOCA; Eucampia zoodiacus; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Extracellular carbonic anhydrase activity; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Intracellular carbonic anhydrase activity per chlorophyll a; Isotopic fractionation, during photosynthis; Laboratory experiment; Laboratory strains; Light:Dark cycle; Measured by loss of 18O (Silverman, 1982); Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH meter, WTW, pH 3000; Phytoplankton; Primary production/Photosynthesis; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Radiation, photosynthetically active; Salinity; see reference(s); Single species; Skeletonema costatum; Species; SPP1158; Temperature, water; Thalassionema nitzschioides; Thalassiosira pseudonana
    Type: Dataset
    Format: text/tab-separated-values, 1263 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kranz, Sven A; Sültemeyer, Dieter; Richter, Klaus-Uwe; Rost, Björn (2009): Carbon acquisition by Trichodesmium: the effect of pCO2 and diurnal changes. Limnology and Oceanography, 54(2), 548-559, https://doi.org/10.4319/lo.2009.54.2.0548
    Publication Date: 2024-03-15
    Description: We investigated carbon acquisition by the N2-fixing cyanobacterium Trichodesmium IMS101 in response to CO2 levels of 15.1, 37.5, and 101.3 Pa (equivalent to 150, 370, and 1000 ppm). In these acclimations, growth rates as well as cellular C and N contents were measured. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, and CO2 and HCO3- fluxes were measured using membrane inlet mass spectrometry and the 14C disequilibrium technique. While no differences in growth rates were observed, elevated CO2 levels caused higher C and N quotas and stimulated photosynthesis and N2 fixation. Minimal extracellular CA (eCA) activity was observed, indicating a minor role in carbon acquisition. Rates of CO2 uptake were small relative to total inorganic carbon (Ci) fixation, whereas HCO{3 contributed more than 90% and varied only slightly over the light period and between CO2 treatments. The low eCA activity and preference for HCO3- were verified by the 14C disequilibrium technique. Regarding apparent affinities, half-saturation concentrations (K1/2) for photosynthetic O2 evolution and HCO3- uptake changed markedly over the day and with CO2 concentration. Leakage (CO2 efflux : Ci uptake) showed pronounced diurnal changes. Our findings do not support a direct CO2 effect on the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) but point to a shift in resource allocation among photosynthesis, carbon acquisition, and N2 fixation under elevated CO2 levels. The observed increase in photosynthesis and N2fixation could have potential biogeochemical implications, as it may stimulate productivity in N-limited oligotrophic regions and thus provide a negative feedback in rising atmospheric CO2 levels.
    Keywords: Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bacteria; Based on changes in chla/cells/POC/PON; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carbon dioxide, total; Conductivity meter (WTW, Weilheim, Gemany); Cyanobacteria; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Laboratory strains; Mass spectrometer ANCA-SL 20-20 Europa Scientific; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon, per cell; Particulate organic carbon content per cell, standard deviation; Particulate organic nitrogen per cell; Particulate organic nitrogen per cell, standard deviation; Pelagos; pH; pH, Electrode; pH, standard deviation; Phosphate; Phytoplankton; Radiation, photosynthetically active; Salinity; Single species; Temperature, water; Trichodesmium sp.; Walz 4pi sensor
    Type: Dataset
    Format: text/tab-separated-values, 96 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-18
    Description: The project AWI-funded AMUST project aims at understanding at current and future controls of Arctic spring blooms and concurrrent effetcs on biogeochemistry,by combining experimental work with long-term monitoring in April and May each year to study the Kongsfjorden spring bloom. This dataset was also used in the FAABulous project to compare spring bloom phenology in open-water and ice-covered fjords. Environmental as well as biological (stoichiometry and photosynthesis) data from the years 2014, and 2016-2018 for the mid-fjord station KB3 were samples. Furthermore, daily average temperature and salinity from a nearby mooring (see Hop et al. 2019 for details) are provided for the study period.
    Keywords: Alkalinity, total; AMUST; Arctic; Arctic phytoplankton under MUltiple STressors; AWIPEV; AWIPEV_2014-AMUST; AWIPEV_2014-AMUST_KB3; AWIPEV_2016-AMUST; AWIPEV_2016-AMUST_KB3; AWIPEV_2017-AMUST; AWIPEV_2017-AMUST_KB3; AWIPEV_2018-AMUST; AWIPEV_2018-AMUST_KB3; Campaign; Carbon, inorganic, total; Carbon, organic, particulate; Carbon, organic, particulate/chlorophyll a ratio; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon dioxide, partial pressure; Carbon fixation rate; Carbon fixation rate, per chlorophyll a; Chlorophyll a; Connectivity between photosystem II; DATE/TIME; DEPTH, water; Dimethylsulfoniopropionate; Effective absorbance cross-section of photosystem II; FAABulous; FAABulous: Future Arctic Algae Blooms and their role in the context of climate change; Fast repetition rate fluorometry (FRRF) (Kolber & Falkowski, 1993); inorganic nutrients; Kongsfjorden; KOP151; Light saturation point; Maximal absolute electron transfer rate; MON; Monitoring; Nitrate; Nitrogen, organic, particulate; Non photochemical quenching; pH; Phosphate; Photosystem II re-opening rate; Phytoplankton; primary production; Quantum yield efficiency of photosystem II; Salinity; Silicate; Slope; Station label; Temperature, water; Water samples
    Type: Dataset
    Format: text/tab-separated-values, 2454 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-20
    Description: Laboratory experiment on acclimated physiological responses of the Arctic diatoms Thalassiosira hyalina and Melosira arctica towards elevated irradiance (50 vs 300 µmol photons m-2 s-1) and CO2 partial pressures (380 vs. 1000 μatm). Next to growth, elemental composition and biomass production, we assessed detailed photophysiological responses through fluorometry and gas-flux measurements, including respiration and carbon acquisition. Both algal cultures were isolated from the field within 2 years before the experiment, T.hyalina in Kongsjorden, Svalbard, and M.arctica in the Fram Strait close to Svalbard.
    Keywords: Climate change; gas-flux measurements; Ice-algae; light intensity; Melosira arctica; Ocean acidification; photophysiology; Thalassiosira hyalina
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 33.7 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-27
    Description: We assessed the responses of solitary cells of Arctic Phaeocystis pouchetii (Strain PS78) grown under a matrix of temperature (2°C vs. 6°C), light intensity (55 vs. 160 μmol photons m-2 s-1) and CO2 partial pressures (pCO2; 400 vs. 1000 μatm). Before the experiments, the strain (isolated during Polarstern cruise PS78 in 2011) was kept as stock culture at 1° in 0.2 µm sterile-filtered Arctic seawater (Salinity 33), enriched with vitamins and trace metals according to F/2 medium (Guillard & Ryther, 1962). Nitrate and phosphate were added in concentrations of 100 and 6 µmol L-1, respectively. Experiments were conducted between May 2016 and September 2017 at the Alfred-Wegener-Institute, using standardized media and continuous light exposition. Next to acclimation parameters (growth rates, particulate and dissolved organic carbon and nitrogen, chlorophyll a content), we measured physiological processes in-vivo (electron transport rates and net photosynthesis) using fast-repetition rate fluorometry and membrane-inlet mass spectrometry. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2024-01-20.
    Keywords: Alkalinity, total; Aragonite saturation state; Arctic; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottle incubation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; calculated from carbonate chemistry using the CO2Sys Excel sheet (Pierrot, Lewis & Wallace, 2006); calculated from chlorophyll a (chl a) and particulate organic carbon (POC) quota; calculated from growth rate and particulate organic carbon (POC) quota; calculated from growth rate and particulate organic nitrogen (PON) quota; calculated from particulate organic carbon (POC) and particulate organic nitrogen (PON) quota; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate, per cell; Carbon, organic, particulate, production per cell; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a/particulate organic carbon ratio; Chlorophyll a per cell; Chromista; Colorimetric detection, TRAACs continuous flow autoanalyzer, according to the method of Stoll et al. (2001); Coulter counter, Beckman Coulter, Multisizer 3; Date/time end; Date/time start; Electron transport rate, relative; Elemental analyzer, EuroVector, EuroEA; EXP; Experiment; Experimental treatment; Fitted parameter using the photosynthesis vs. Irradiance equation from Rokitta & Rost (2012), raw data obtained using a membrane-inlet mass spectrometer (MIMS) as described in Kottmeier, Rokitta & Rost (2016); Fitted parameter using the photosynthesis vs. Irradiance equation from Rokitta & Rost (2012); raw data obtained using a fast-repetition rate fluoremeter (FRRF), FastOcean PTX with FastAct Laboratory system, Chelsea Technologies after Oxborough et al. (201; Fluorometer, Turner Designs, TD-700, using acidification method (Knap et al., 1996); Fram Strait; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth rate; Haptophyta; Initial slope of the photosynthesis-irradiance curve, relative electron transfer rate per unit light; Laboratory experiment; Light; Light acclimation index; Maximum photosynthesis rate, oxygen, per chlorophyll a; Nitrogen, organic, particulate, per cell; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pCO2 mixed from CO2-free air and pure CO2 with a custom built gas mixing system; Pelagos; pH; pH 826 mobile handheld device, with Aquatrode Plus, Metrohm; Phaeocystis_pouchetii_PS78; Phaeocystis pouchetii; Phytoplankton; Polar; Primary production/Photosynthesis; Production of particulate organic nitrogen; Replicate; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strain; Temperature; Temperature, water; Thermometer, internal, Aquatrode Plus, Metrohm; Treatment: light intensity; Treatment: partial pressure of carbon dioxide; Treatment: temperature; Type of study; Universal light meter & data logger, WALZ, ULM-500, with 4Pi sensor, LI-COR
    Type: Dataset
    Format: text/tab-separated-values, 1580 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...