GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (3)
  • 2020-2024  (3)
  • 2005-2009
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: It has been hypothesized that vanadium (V) isotopes have the potential to track sedimentary redox conditions due to multiple valence states occurring in nature, which might induce variable V isotope fractionation as a function of sedimentary redox state. These characteristica could make V isotopes a useful paleo-redox proxy. However, in order to understand the mechanisms driving V isotope fractionation, it is crucial to build a framework for the depositional and post-depositional controls on sedimentary V isotope records from a diverse set of sedimentary environments. This study, for the first time, investigates the V isotope variations of modern marine sediments deposited under a range of redox environments. Our results document that changes in local redox conditions impart a significant isotopic fractionation from seawater as recorded in the local sedimentary V isotopic signature. Importantly, there is a significant difference between the V isotope composition of sediments deposited in the open ocean setting with oxygen-deficient bottom waters compared to less reducing environments, whereby oxic sediments (benthic oxygen contents 〉 10 μΜ) exhibit Δoxic = −1.1 ± 0.3‰ and anoxic sediments exhibit Δanoxic = −0.7 ± 0.2‰. Combined with previous studies on seawater particulate and sediment pore fluid analysis, our results indicate that V is mainly delivered and enriched in anoxic sediments through settling particulates. Authigenic V isotope compositions in marine sediments are likely controlled by isotope fractionation between V species bound to particulates and dissolved in seawater, which likely varies with the speciation and adsorption properties of V that are strongly controlled by local redox conditions. In addition, the euxinic Cariaco Basin sediments exhibit distinctive Δeuxinic = −0.4 ± 0.2‰, which is likely influenced by the relationship between the seawater V removal rate and the seawater renewal rate. Our results highlight the direct link between authigenic marine sedimentary V isotope compositions and the overlying local redox conditions. This investigation of V isotopes in modern marine environments provides an initial framework for the utilization of V isotopes to reconstruct ancient redox fluctuations, which has the potential to track subtle redox variations of local oxygen-deficient to low oxygen environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Along mid-ocean ridges, submarine venting has been found at all spreading rates and in every ocean basin. By contrast, intraplate hydrothermal activity has only been reported from five locations, worldwide. Here we extend the time series at one of those sites, Teahitia Seamount, which was first shown to be hydrothermally active in 1983 but had not been revisited since 1999. Previously, submersible investigations had led to the discovery of low-temperature (≤30°C) venting associated with the summit of Teahitia Seamount at ≤1500 m. In December 2013 we returned to the same site at the culmination of the US GEOTRACES Eastern South Tropical Pacific (GP16) transect and found evidence for ongoing venting in the form of a non-buoyant hydrothermal plume at a depth of 1400 m. Multi-beam mapping revealed the same composite volcano morphology described previously for Teahitia including four prominent cones. The plume overlying the summit showed distinct in situ optical backscatter and redox anomalies, coupled with high concentrations of total dissolvable Fe (≤186 nmol/L) and Mn (≤33 nmol/L) that are all diagnostic of venting at the underlying seafloor. Continuous seismic records from 1986-present reveal a ∼15 year period of quiescence at Teahitia, following the seismic crisis that first stimulated its submersible-led investigation. Since 2007, however, the frequency of seismicity at Teahitia, coupled with the low magnitude of those events, are suggestive of magmatic reactivation. Separately, distinct seismicity at the adjacent Rocard seamount has also been attributed to submarine extrusive volcanism in 2011 and in 2013. Theoretical modeling of the hydrothermal plume signals detected suggest a minimum heat flux of 10 MW at the summit of Teahitia. Those model simulations can only be sourced from an area of low-temperature venting such as that originally reported from Teahitia if the temperature of the fluids exiting the seabed has increased significantly, from ≤30°C to ∼70°C. These model seafloor temperatures and our direct plume observations are both consistent with reports from Loihi Seamount, Hawaii, ∼10 year following an episode of seafloor volcanism. We hypothesize that the Society Islands hotspot may be undergoing a similar episode of both magmatic and hydrothermal reactivation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: In 2016, the research ice-breaker Polarstern surveyed the submerged peaks of the permanently ice-covered Langseth Ridge, a tectonic feature comprising the Karasik seamount and two deeper seamount peaks, abutting the Gakkel ultra-slow spreading ridge (87°N 62°E to 85.5°N 57.4°E)1. A towed marine camera sled and a hybrid remotely operated vehicle revealed these peaks to be covered by a dense demosponge community, at first glance reminiscent of North Atlantic Geodia grounds (sensu2). Sponges were observed on top of a thick layer of spicule mat (Figure 1 and Video S1), intermixed with underlying layers of empty siboglinid tubes and bivalve shells, a substrate covering almost the entire seafloor. We observed trails of densely interwoven spicules connected directly to the underside or lower flanks of sponge individuals (Figure 1), suggesting these trails are traces of motile sponges. This is the first time abundant sponge trails have been observed in situ and attributed to sponge mobility. Given the low primary production in this permanently ice-covered region, these trails may relate to feeding behavior and/or a strategy for dispersal of juveniles. Such trails may remain visible for long periods given the regionally low sedimentation rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...