GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
  • 2010-2014  (1)
Document type
Years
Year
  • 1
    Publication Date: 2013-05-16
    Description: Hypotonicity triggered in human hepatoma cells (Huh-7) the release of ATP and cell swelling, followed by volume regulatory decrease (RVD). We analyzed how the interaction between those processes modulates cell volume. Cells exposed to hypotonic medium swelled 1.5 times their basal volume. Swelling was followed by 41% RVD 40 (extent of RVD after 40 min of maximum), whereas the concentration of extracellular ATP (ATP e ) increased 10 times to a maximum value at 15 min. Exogenous apyrase (which removes di- and trinucleotides) did not alter RVD, whereas exogenous Na + -K + -ATPase (which converts ATP to ADP in the extracellular medium) enhanced RVD 40 by 2.6 times, suggesting that hypotonic treatment alone produced a basal RVD, whereas extracellular ADP activated RVD to achieve complete volume regulation (i.e., RVD 40 100%). Under hypotonicity, addition of 2-(methylthio)adenosine 5'-diphosphate (2MetSADP; ADP analog) increased RVD to the same extent as exposure to Na + -K + -ATPase and the same analog did not stimulate RVD when coincubated with MRS2211, a blocker of ADP receptor P2Y 13 . RT-PCR and Western blot analysis confirmed the presence of P2Y 13 . Cells exhibited significant ectoATPase activity, which according to RT-PCR analysis can be assigned to ENTPDase2. Both carbenoxolone, a blocker of conductive ATP release, and brefeldin A, an inhibitor of exocytosis, were able to partially decrease ATP e accumulation, pointing to the presence of at least two mechanisms for ATP release. Thus, in Huh-7 cells, hypotonic treatment triggered the release of ATP. Conversion of ATP e to ADP e by ENTPDase 2 activity facilitates the accumulated ADP e to activate P2Y 13 receptors, which mediate complete RVD.
    Print ISSN: 0363-6143
    Electronic ISSN: 1522-1563
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-09
    Description: Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-09
    Description: Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-26
    Description: To determine the relationships between the functional trait composition of forest communities and environmental gradients across scales and biomes and the role of species relative abundances in these relationships.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...