GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (62)
  • 2020-2024  (40)
  • 2010-2014  (22)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2023-01-30
    Description: Data sets are outputs of two experiments (each experiment includes two or more temporally replicated trials - named by date) that were conducted using a newly developed Fluorometer and Oximeter equipped Flow-through Setup (FOFS). The corresponding method paper is titled 'Simultaneous recording of filtration and respiration in marine organisms in response to short-term environmental variability'. The paper is under review by Limnology and Oceanography: Methods. The main directory of experimental data (e.g., FOFS_test/blank_trials) contain subdirectories termed raw_data_temperature (including °C-temperature .xlsx files), raw_data_Chl, and raw_data_Oxygen, the two latter contains folders named after the starting dates of the trials (e.g., 04_nov). Each of these folders has three subfolders named after the three stages of the trial (i.e., pre, main, and post). Each subfolder includes data sheets of mV-Chl (.CSV) or %air-saturation (.xlxs, which are outputs of the DO calulator.py) that were collected in the corresponding stage and trial. The data can be processed through the Python scripts accompanying the method paper, providing time-series of filtration, respiration, and scope for growth along daily thermal cycles for the studied blue mussel Mytilus spp. specimens (see the paper for details).
    Keywords: daily; ecology; energetics; fluctuations; functional traits; Python; warming
    Type: Dataset
    Format: application/zip, 6.7 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hüning, Anne K; Melzner, Frank; Thomsen, Jörn; Gutowska, Magdalena A; Krämer, Lars; Frickenhaus, Stephan; Rosenstiel, Philip; Pörtner, Hans-Otto; Philipp, Eva E R; Lucassen, Magnus (2013): Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Marine Biology, 160(8), 1845-1861, https://doi.org/10.1007/s00227-012-1930-9
    Publication Date: 2023-05-12
    Description: Marine organisms have to cope with increasing CO2 partial pressures and decreasing pH in the oceans. We elucidated the impacts of an 8-week acclimation period to four seawater pCO2 treatments (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 µatm) on mantle gene expression patterns in the blue mussel Mytilus edulis from the Baltic Sea. Based on the M. edulis mantle tissue transcriptome, the expression of several genes involved in metabolism, calcification and stress responses was assessed in the outer (marginal and pallial zone) and the inner mantle tissues (central zone) using quantitative real-time PCR. The expression of genes involved in energy and protein metabolism (F-ATPase, hexokinase and elongation factor alpha) was strongly affected by acclimation to moderately elevated CO2 partial pressures. Expression of a chitinase, potentially important for the calcification process, was strongly depressed (maximum ninefold), correlating with a linear decrease in shell growth observed in the experimental animals. Interestingly, shell matrix protein candidate genes were less affected by CO2 in both tissues. A compensatory process toward enhanced shell protection is indicated by a massive increase in the expression of tyrosinase, a gene involved in periostracum formation (maximum 220-fold). Using correlation matrices and a force-directed layout network graph, we were able to uncover possible underlying regulatory networks and the connections between different pathways, thereby providing a molecular basis of observed changes in animal physiology in response to ocean acidification.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Comment; File name; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 12 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-10-28
    Description: Robust estimates of marine species vulnerability to ongoing climate change require realistic stressor experiments. Here, we subjected an important coastal predator, the sea star Asterias rubens, to projected warming and ocean acidification over an annual seasonal cycle. Warming and, less so, acidification, had strongly season-specific impacts on animal energy budgets. Specifically, simulated future summer temperatures caused 〉95% sea star mortality, reduced feeding rate and body mass loss. Additional acute experiments demonstrated that respiratory oxygen flux was preferentially directed to support high summer metabolism at the expense of feeding-related processes. Using 15 years of field temperature data and end of century warming projections, we estimate that potentially lethal summer heat waves will occur in 20% of future years. Our study demonstrates the importance of assessing stress responses along seasonal thermal cycles and the high selective force that future summer heat waves likely can exert on coastal marine animal populations.
    Keywords: Asterias rubens; Baltic Sea; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cluster of Excellence: The Future Ocean; DATE/TIME; ECO2; Experiment; Feeding rate; FutureOcean; Oxygen, partial pressure; oxygen diffusion; Replicate; Salinity; sea star; SFB754; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Temperature; Temperature, water; Treatment; Δ oxygen, partial pressure
    Type: Dataset
    Format: text/tab-separated-values, 240 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-10-28
    Description: Robust estimates of marine species vulnerability to ongoing climate change require realistic stressor experiments. Here, we subjected an important coastal predator, the sea star Asterias rubens, to projected warming and ocean acidification over an annual seasonal cycle. Warming and, less so, acidification, had strongly season-specific impacts on animal energy budgets. Specifically, simulated future summer temperatures caused 〉95% sea star mortality, reduced feeding rate and body mass loss. Additional acute experiments demonstrated that respiratory oxygen flux was preferentially directed to support high summer metabolism at the expense of feeding-related processes. Using 15 years of field temperature data and end of century warming projections, we estimate that potentially lethal summer heat waves will occur in 20% of future years. Our study demonstrates the importance of assessing stress responses along seasonal thermal cycles and the high selective force that future summer heat waves likely can exert on coastal marine animal populations.
    Keywords: Asterias rubens; Asterias rubens, biomass, wet mass; Baltic Sea; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cluster of Excellence: The Future Ocean; DATE/TIME; ECO2; FutureOcean; Gonad, wet mass; Gonadosomatic index; Identification; oxygen diffusion; Pyloric caeca, wet mass; Pyloric caeca somatic index; sea star; SFB754; Species; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Sum; Temperature
    Type: Dataset
    Format: text/tab-separated-values, 704 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-28
    Description: Robust estimates of marine species vulnerability to ongoing climate change require realistic stressor experiments. Here, we subjected an important coastal predator, the sea star Asterias rubens, to projected warming and ocean acidification over an annual seasonal cycle. Warming and, less so, acidification, had strongly season-specific impacts on animal energy budgets. Specifically, simulated future summer temperatures caused 〉95% sea star mortality, reduced feeding rate and body mass loss. Additional acute experiments demonstrated that respiratory oxygen flux was preferentially directed to support high summer metabolism at the expense of feeding-related processes. Using 15 years of field temperature data and end of century warming projections, we estimate that potentially lethal summer heat waves will occur in 20% of future years. Our study demonstrates the importance of assessing stress responses along seasonal thermal cycles and the high selective force that future summer heat waves likely can exert on coastal marine animal populations.
    Keywords: Asterias rubens; Baltic Sea; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cluster of Excellence: The Future Ocean; DATE/TIME; ECO2; Experiment; FutureOcean; Oxygen, partial pressure; oxygen diffusion; Salinity; sea star; SFB754; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Temperature; Temperature, water; Treatment; Δ oxygen, partial pressure
    Type: Dataset
    Format: text/tab-separated-values, 144 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-28
    Description: Robust estimates of marine species vulnerability to ongoing climate change require realistic stressor experiments. Here, we subjected an important coastal predator, the sea star Asterias rubens, to projected warming and ocean acidification over an annual seasonal cycle. Warming and, less so, acidification, had strongly season-specific impacts on animal energy budgets. Specifically, simulated future summer temperatures caused 〉95% sea star mortality, reduced feeding rate and body mass loss. Additional acute experiments demonstrated that respiratory oxygen flux was preferentially directed to support high summer metabolism at the expense of feeding-related processes. Using 15 years of field temperature data and end of century warming projections, we estimate that potentially lethal summer heat waves will occur in 20% of future years. Our study demonstrates the importance of assessing stress responses along seasonal thermal cycles and the high selective force that future summer heat waves likely can exert on coastal marine animal populations.
    Keywords: Asterias rubens; Baltic Sea; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cluster of Excellence: The Future Ocean; ECO2; FutureOcean; oxygen diffusion; sea star; SFB754; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Temperature
    Type: Dataset
    Format: application/zip, 10 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-10-28
    Description: Robust estimates of marine species vulnerability to ongoing climate change require realistic stressor experiments. Here, we subjected an important coastal predator, the sea star Asterias rubens, to projected warming and ocean acidification over an annual seasonal cycle. Warming and, less so, acidification, had strongly season-specific impacts on animal energy budgets. Specifically, simulated future summer temperatures caused 〉95% sea star mortality, reduced feeding rate and body mass loss. Additional acute experiments demonstrated that respiratory oxygen flux was preferentially directed to support high summer metabolism at the expense of feeding-related processes. Using 15 years of field temperature data and end of century warming projections, we estimate that potentially lethal summer heat waves will occur in 20% of future years. Our study demonstrates the importance of assessing stress responses along seasonal thermal cycles and the high selective force that future summer heat waves likely can exert on coastal marine animal populations.
    Keywords: Asterias rubens; Baltic Sea; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cluster of Excellence: The Future Ocean; ECO2; Experiment; Food consumption; FutureOcean; Mortality; oxygen diffusion; Respiration rate, oxygen, per ash free dry mass; Scope for growth; Season; sea star; SFB754; Species; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Tank number; Temperature; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 984 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-10-28
    Description: Robust estimates of marine species vulnerability to ongoing climate change require realistic stressor experiments. Here, we subjected an important coastal predator, the sea star Asterias rubens, to projected warming and ocean acidification over an annual seasonal cycle. Warming and, less so, acidification, had strongly season-specific impacts on animal energy budgets. Specifically, simulated future summer temperatures caused 〉95% sea star mortality, reduced feeding rate and body mass loss. Additional acute experiments demonstrated that respiratory oxygen flux was preferentially directed to support high summer metabolism at the expense of feeding-related processes. Using 15 years of field temperature data and end of century warming projections, we estimate that potentially lethal summer heat waves will occur in 20% of future years. Our study demonstrates the importance of assessing stress responses along seasonal thermal cycles and the high selective force that future summer heat waves likely can exert on coastal marine animal populations.
    Keywords: Asterias rubens; Baltic Sea; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cluster of Excellence: The Future Ocean; Concentration; DATE/TIME; ECO2; Experiment; FutureOcean; Metabolite; oxygen diffusion; Replicate; sea star; SFB754; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 250 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-10-28
    Description: Robust estimates of marine species vulnerability to ongoing climate change require realistic stressor experiments. Here, we subjected an important coastal predator, the sea star Asterias rubens, to projected warming and ocean acidification over an annual seasonal cycle. Warming and, less so, acidification, had strongly season-specific impacts on animal energy budgets. Specifically, simulated future summer temperatures caused 〉95% sea star mortality, reduced feeding rate and body mass loss. Additional acute experiments demonstrated that respiratory oxygen flux was preferentially directed to support high summer metabolism at the expense of feeding-related processes. Using 15 years of field temperature data and end of century warming projections, we estimate that potentially lethal summer heat waves will occur in 20% of future years. Our study demonstrates the importance of assessing stress responses along seasonal thermal cycles and the high selective force that future summer heat waves likely can exert on coastal marine animal populations.
    Keywords: Asterias rubens; Baltic Sea; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cluster of Excellence: The Future Ocean; ECO2; Experiment; Food consumption; FutureOcean; oxygen diffusion; Season; sea star; SFB754; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Tank number; Temperature; Temperature, mean; Temperature, water, standard deviation; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 240 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-28
    Description: Robust estimates of marine species vulnerability to ongoing climate change require realistic stressor experiments. Here, we subjected an important coastal predator, the sea star Asterias rubens, to projected warming and ocean acidification over an annual seasonal cycle. Warming and, less so, acidification, had strongly season-specific impacts on animal energy budgets. Specifically, simulated future summer temperatures caused 〉95% sea star mortality, reduced feeding rate and body mass loss. Additional acute experiments demonstrated that respiratory oxygen flux was preferentially directed to support high summer metabolism at the expense of feeding-related processes. Using 15 years of field temperature data and end of century warming projections, we estimate that potentially lethal summer heat waves will occur in 20% of future years. Our study demonstrates the importance of assessing stress responses along seasonal thermal cycles and the high selective force that future summer heat waves likely can exert on coastal marine animal populations.
    Keywords: Asterias rubens; Asterias rubens, biomass, wet mass; Baltic Sea; Biomass, ash free dry mass; Calcification rate; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cluster of Excellence: The Future Ocean; ECO2; Experiment; FutureOcean; oxygen diffusion; Respiration rate, oxygen, per ash free dry mass; Respiration rate, oxygen, per wet mass; Salinity; Season; sea star; SFB754; Species; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Tank number; Temperature; Temperature, water; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 949 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...