GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (7)
  • 2015-2019  (9)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2024-03-02
    Description: We present a new 150,000-year-long, well-dated, high-resolution deep ocean acidity record, which reveals five hitherto undetected modes of stadial ocean ventilation with different consequences for deep-sea carbon storage and associated atmospheric CO2 changes. The data set contains the age model G. bulloides oxygen isotope, IRD counts, N. pachyderma counting, and C. wuellerstorfi B/Ca ratios from sediment core MD95-2039. We also present the new deep-water carbonate ion reconstructions at MD95-2039 using C. wuellerstorfi B/Ca.
    Keywords: Age model; Cibicidoides wuellerstorfi B/Ca; Iberian margin
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-02
    Keywords: Age, comment; Age model; CALYPSO; Calypso Corer; Cibicidoides wuellerstorfi B/Ca; DEPTH, sediment/rock; Iberian margin; IMAGES I; Marion Dufresne (1995); MD101; MD952039; MD95-2039; Porto Seamount; Sedimentation rate; Type of age model
    Type: Dataset
    Format: text/tab-separated-values, 231 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-02
    Keywords: AGE; Age model; CALYPSO; Calypso Corer; Cibicidoides wuellerstorfi B/Ca; Counting 〉150 µm fraction; DEPTH, sediment/rock; Iberian margin; IMAGES I; Marion Dufresne (1995); MD101; MD952039; MD95-2039; Neogloboquadrina pachyderma sinistral; Porto Seamount; Reference/source
    Type: Dataset
    Format: text/tab-separated-values, 482 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-02
    Keywords: AGE; Age model; CALYPSO; Calypso Corer; Cibicidoides wuellerstorfi B/Ca; DEPTH, sediment/rock; Iberian margin; Ice rafted debris; IMAGES I; Marion Dufresne (1995); MD101; MD952039; MD95-2039; Porto Seamount
    Type: Dataset
    Format: text/tab-separated-values, 66 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-02
    Keywords: AGE; Age model; CALYPSO; Calypso Corer; Carbonate ion; Cibicidoides wuellerstorfi, Boron/Calcium ratio; Cibicidoides wuellerstorfi B/Ca; DEPTH, sediment/rock; Depth, sediment/rock, bottom/maximum; Depth, sediment/rock, top/minimum; Iberian margin; IMAGES I; Marion Dufresne (1995); MD101; MD952039; MD95-2039; Porto Seamount; Reference/source
    Type: Dataset
    Format: text/tab-separated-values, 2910 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-02
    Keywords: AGE; Age model; Calculated, 3-point moving average; CALYPSO; Calypso Corer; Cibicidoides wuellerstorfi B/Ca; DEPTH, sediment/rock; Globigerina bulloides, δ18O; Iberian margin; IMAGES I; Marion Dufresne (1995); MD101; MD952039; MD95-2039; Porto Seamount; Reference/source
    Type: Dataset
    Format: text/tab-separated-values, 3770 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-18
    Description: The earthquake anomalies associated with the 6 April 2009 Mw 6.3 L’Aquila earthquake have been widely reported. Nevertheless,the reported anomalies have not been so far synergically analyzed to interpret or prove the potential lithosphere–coversphere–atmosphere coupling (LCAC) process. Previous studies on b value (a seismicity parameter from Gutenberg–Richter law) are also insufficient. In this work, the spatiotemporal evolution of several hydrothermal parameters related to the coversphere and atmosphere, including soil moisture, soil temperature, near-surface air temperature, and precipitable water, was comprehensively investigated. Air temperature and atmospheric aerosol were also statistically analyzed in time series with ground observations. An abnormal enhancement of aerosol occurred on 30 March 2009 and thus proved quasi-synchronous anomalies among the hydrothermal parameters from 29 to 31 March in particular places geo-related to tectonic thrusts and local topography. The three-dimensional (3-D) visualization analysis of b value revealed that regional stress accumulated to a high level, particularly in the L’Aquila basin and around regional large thrusts. Finally, the coupling effects of geospheres were discussed, and a conceptual LCAC mode was proposed to interpret the possible mechanisms of the multiple quasi-synchronous anomalies preceding the L’Aquila earthquake. Results indicate that CO2-rich fluids in deep crust might have played a significant role in the local LCAC process.
    Description: Published
    Description: 1859–1880
    Description: 6T. Variazioni delle caratteristiche crostali e precursori
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Atmospheric and Oceanic Technology, AMER METEOROLOGICAL SOC, 34(9), pp. 1985-1999, ISSN: 0739-0572
    Publication Date: 2018-12-01
    Description: Sea surface temperature (SST) data from the Copernicus Marine Environment Monitoring Service are assimilated into a pan-Arctic ice–ocean coupled model using the ensemble-based local singular evolutive interpolated Kalman (LSEIK) filter. This study found that the SST deviation between model hindcasts and independent SST observations is reduced by the assimilation. Compared with model results without data assimilation, the deviation between the model hindcasts and independent SST observations has decreased by up to 0.28degC at the end of summer. The strongest SST improvements are located in the Greenland Sea, the Beaufort Sea, and the Canadian Arctic Archipelago. The SST assimilation also changes the sea ice concentration (SIC). Improvements of the ice concentrations are found in the Canadian Arctic Archipelago, the Beaufort Sea, and the central Arctic basin, while negative effects occur in the west area of the eastern Siberian Sea and the Laptev Sea. Also, sea ice thickness (SIT) benefits from ensemble SST assimilation.A comparison with upward-looking sonar observations reveals that hindcasts of SIT are improved in the Beaufort Sea by assimilating reliable SST observations into light ice areas. This study illustrates the advantages of assimilating SST observations into an ice–ocean coupled model system and suggests that SST assimilation can improve SIT hindcasts regionally during the melting season.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Centurioni, L. R., Turton, J., Lumpkin, R., Braasch, L., Brassington, G., Chao, Y., Charpentier, E., Chen, Z., Corlett, G., Dohan, K., Donlon, C., Gallage, C., Hormann, V., Ignatov, A., Ingleby, B., Jensen, R., Kelly-Gerreyn, B. A., Koszalka, I. M., Lin, X., Lindstrom, E., Maximenko, N., Merchant, C. J., Minnett, P., O'Carroll, A., Paluszkiewicz, T., Poli, P., Poulain, P., Reverdin, G., Sun, X., Swail, V., Thurston, S., Wu, L., Yu, L., Wang, B., & Zhang, D. Global in situ observations of essential climate and ocean variables at the air-sea interface. Frontiers in Marine Science, 6, (2019): 419, doi: 10.3389/fmars.2019.00419.
    Description: The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored.
    Description: LC, LB, and VH were supported by NOAA grant NA15OAR4320071 and ONR grant N00014-17-1-2517. RL was supported by NOAA/AOML and NOAA’s Ocean Observation and Monitoring Division. NM was partly supported by NASA grant NNX17AH43G. IK was supported by the Nordic Seas Eddy Exchanges (NorSEE) funded by the Norwegian Research Council (Grant 221780). DZ was partly funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. RJ was supported by the USACE’s Civil Works 096×3123.
    Keywords: Global in situ observations ; Air-sea interface ; Essential climate and ocean variables ; Climate variability and change ; Weather forecasting ; SVP drifters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(8), (2019): 2185-2205. doi:10.1175/JCLI-D-18-0538.1.
    Description: Much attention has been paid to the climatic impacts of changes in the Kuroshio Extension, instead of the Kuroshio in the East China Sea (ECS). This study, however, reveals the prominent influences of the lateral shift of the Kuroshio at interannual time scale in late spring [April–June (AMJ)] on the sea surface temperature (SST) and precipitation in summer around the ECS, based on high-resolution satellite observations and ERA-Interim. A persistent offshore displacement of the Kuroshio during AMJ can result in cold SST anomalies in the northern ECS and the Japan/East Sea until late summer, which correspondingly causes anomalous cooling of the lower troposphere. Consequently, the anomalous cold SST in the northern ECS acts as a key driver to robustly enhance the precipitation from the Yangtze River delta to Kyushu in early summer (May–August) and over the central ECS in late summer (July–September). In view of the moisture budget analysis, two different physical processes modulated by the lateral shift of the Kuroshio are identified to account for the distinct responses of precipitation in early and late summer, respectively. First, the anomalous cold SST in the northern ECS induced by the Kuroshio offshore shift is likely conducive to the earlier arrival of the mei-yu–baiu front at 30°–32°N and its subsequent slower northward movement, which may prolong the local rainy season, leading to the increased rain belt in early summer. Second, the persistent cold SST anomalies in late summer strengthen the near-surface baroclinicity and the associated strong atmospheric fronts embedded in the extratropical cyclones over the central ECS, which in turn enhances the local rainfall.
    Description: We appreciate three anonymous reviewers for their thoughtful and constructive comments. This work is supported by the National Key Research and Development Program of China (2016YFA0601804), the National Natural Science Foundation of China (NSFC) Projects (91858102, 41490643, 41490640, 41506009, U1606402) and the OUC–WHOI joint research program (21366).
    Description: 2019-10-01
    Keywords: Continental shelf/slope ; Atmosphere-ocean interaction ; Boundary currents ; Precipitation ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...