GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-24
    Description: Ocean biological processes play an important role in the global carbon cycle via the production of organic matter and its subsequent export. Often, this flux is assumed to be in steady state; however, it is dependent on nutrients introduced to surface waters via multiple mechanisms, some of which are likely to exhibit both intra-annual and interannual variability leading to comparable variability in ocean carbon uptake. Here we test this variability using surface (5 m) inorganic nutrient concentrations from voluntary observing ships and satellite-derived estimates of chlorophyll and net primary production. At lower latitudes, the seasonality is small, and the monthly averages of nitrate:phosphate are lower than the canonical 16:1 Redfield ratio, implying nitrogen limitation, a situation confirmed via a series of nutrient limitation experiments conducted between Bermuda and Puerto Rico. The nutrient seasonal cycle is more pronounced at higher latitudes, with clear interannual variability. Over a large area of the midlatitude North Atlantic, the winters of 2009/2010 and 2010/2011 had nitrate values more than 1μmol L−1 higher than the 2002–2017 average, suggesting that during this period, the system may have shifted to phosphorus limitation. This nitrate increase meant that, in the region between 31◦ and 39◦ N, new production calculated from nitrate uptake was 20.5g C m−2 in 2010, more than four times higher than the median value of the whole observing period. Overall, we suggest that substantial variability in nutrient concentrations and biological carbon uptake occurs in the North Atlantic with interannual variability apparent over a number of different time scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-22
    Description: Fecal pellets (FP) are a key component of the biological carbon pump, as they can, under some circumstances, efficiently transfer carbon to depth. Like other forms of particulate organic carbon (POC), they can be remineralized in the ocean interior (particularly in the upper 200 m), or alternatively they can be preserved in the sediments. The controls on the attenuation of FP flux with depth are not fully understood, in particular, the relative contributions of zooplankton fragmentation and microbial/zooplankton respiration to FP loss. Collection of sinking particles using Marine Snow Catchers at three ecologically contrasting sites in the Scotia Sea, Antarctica, revealed large differences in POC flux composition (5–96% FP) and flux attenuation despite similar temperatures. To determine the importance of microbial respiration on FP loss in the upper mesopelagic, we made the first ever measurements of small scale oxygen gradients through the boundary layer at the interface of krill FP collected from the Scotia Sea. Estimated carbon-specific respiration rates of microbes within FP (0.010–0.065 d−1) were too low to account for the observed large decreases in FP flux over the upper 200 m. Therefore, the observed rapid declines in downward FP flux in the upper mesopelagic are more likely to be caused by zooplankton, through coprophagy, coprorhexy, and coprochaly. Microbial respiration is likely to be more important in regions of higher temperatures, and at times of the year, or in depths of the ocean, where zooplankton abundances are low and therefore grazing and fragmentation processes are reduced.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-05
    Description: Aim: Most protist plankton are mixotrophic, with potential to engage in photoautotrophy and phagotrophy; however, the ecology of these organisms has been misdiagnosed for over a century. A large proportion of these organisms are constitutive mixotrophs (CMs), with an innate ability to photosynthesize. Here, for the first time, an analysis is presented of the biogeography of CMs across the oceans. Location: Global marine ecosystems. Time period: 1970–2018. Major taxa studied: Marine planktonic protists. Methods: Records for CM species, primarily from the Ocean Biogeographic Information System (OBIS), were grouped by taxonomy and size to evaluate sampling efforts across Longhurst's oceanic provinces. Biases were evaluated through nonparametric tests and multivariate analysis. Biogeographies of CMs from OBIS data were compared with data from studies that specifically targeted these organisms. Results: Constitutive mixotrophs of different taxonomic groups, across all size ranges, are ubiquitous. However, strong database biases were detected with respect to organism size, taxonomic groups and region. A strong bias was seen towards dinophytes. Species 〈 20 μm, especially non‐dinophytes, were least represented, with their recorded distribution limited to coastal regions and to temperate and polar seas. Studies specifically targeting these organisms revealed their distribution to be much wider. Such biases are likely to have occurred owing to a failure to capture and correctly identify these organisms in routine sampling protocols. Main conclusions: Constitutive mixotrophs are dominant members of organisms traditionally termed “phytoplankton”. However, lack of routine protocols for measuring phagotrophy in “phytoplankton” protists has led to widespread misrepresentation of the fundamental nature of marine planktonic primary producers; most express both “animal‐like” and “plant‐like” nutrition. Our results have implications for studies of the global biogeography of plankton, of food web dynamics (including models) and of biogeochemical cycling in the oceans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-18
    Description: The North Atlantic Basin is a major sink for atmospheric carbon dioxide (CO2) due in part to the extensive plankton blooms which form there supported by nutrients supplied by the three-dimensional ocean circulation. Hence, changes in ocean circulation and/or stratification may influence primary production and biological carbon export. In this study, we assess this possibility by evaluating inorganic nutrient budgets for 2004 and 2010 in the North Atlantic based on observations from the transatlantic A05-24.5°N and the Greenland-Portugal OVIDE hydrographic sections, to which we applied a box inverse model to solve the circulation and estimate the across-section nutrient transports. Full water column nutrient budgets were split into upper and lower meridional overturning circulation (MOC) limbs. According to our results, anomalous circulation in early 2010, linked to extreme negative NAO conditions, led to an enhanced northward advection of more nutrient-rich waters by the upper overturning limb, which resulted in a significant nitrate and phosphate convergence north of 24.5°N. Combined with heaving of the isopycnals, this anomalous circulation event in 2010 favored an enhancement of the nutrient consumption (5.7 ± 4.1 kmol-P s−1) and associated biological CO2 uptake (0.25 ± 0.18 Pg-C yr−1, upper-bound estimate), which represents a 50% of the mean annual sea–air CO2 flux in the region. Our results also suggest a transient state of deep silicate divergence in both years. Both results are indicative of a MOC-driven modulation of the biological carbon uptake (by the upper MOC limb) and nutrient inventories (by the lower MOC limb) in the North Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-10
    Description: By 2030, success for Ocean Decade Challenge number 5 will be marked by a move toward a more sustainable and climate-resilient ocean that aligns with the United Nations’ sustainable development goals. Crucially, the success of Challenge 5 is intricately linked to the outcomes of Challenges 1 to 4, which focus on understanding climate-ocean interactions, controlling marine pollution, conserving biodiversity, and ensuring sustainable food production. Success will include fulfillment of critical science and knowledge gaps with respect to climate adaptation and mitigation. Both approaches need to be addressed in parallel. Key mitigation approaches include the development of marine renewable energies, reduction in marine pollution, the development of blue carbon ecosystems, and marine carbon dioxide removal (mCDR). Adaptation approaches include increased ocean literacy/awareness; co-designed governance and co-operation; improved risk reduction policies; and improved predictive capability of ocean, climate, and weather forecasts. Challenge 5 was reported as one of the most commonly cited Challenges for knowledge uptake in the Decade. However, important gaps still remain in terms of the geographical scope of the actions under this and other challenges.
    Description: Published
    Description: Refereed
    Keywords: Climate change effects ; Ocean prediction ; Ocean forecasting ; Weather forecasting
    Repository Name: AquaDocs
    Type: Report
    Format: 25pp.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-02-01
    Description: Particle sinking velocity is considered to be a controlling factor for carbon transport to the deep sea and thus carbon sequestration in the oceans. The velocities of the material exported to depth are considered to be high in high-latitude productive systems and low in oligotrophic distributions. We use a recently developed method based on the measurement of the radioactive pair 210Po-210Pb to calculate particle sinking velocities in the temperate and oligotrophic North Atlantic during different bloom stages. Our estimates of average sinking velocities (ASVs) show that slowly sinking particles (〈100 m d−1) contribute significantly to carbon flux at all the locations except in the temperate regions during the bloom. ASVs appear to vary strongly with season, which we propose is caused by changes in the epipelagic community structure. Our results are the first field data to confirm the long-standing theory that particle sinking velocities increase with depth, with increases of up to 90% between 50 and 150 m depth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Description: Highlights: • Performances of 3 methods to obtain POC flux and export efficiency are examined. • Bloom dynamics and sampling date must be associated to the method time scale. • Discrepancies between PEALAGRA, 234Th and 210Po methods are satisfactory interpreted. • Seasonal variability of the export efficiency in the North Atlantic is detected. Abstract: The Biological Carbon Pump is an important component of the global carbon cycle is (BCP). Particle Export Efficiency (PEeff), defined as the proportion of primary production (PP) exported as Particulate Organic Carbon (POC) from the surface ocean, is increasingly used as a metric of the strength of the BCP. However our knowledge of which factors drive variability of PEeff remains poor. This is partially because comparisons of PEeff in different regions often overlook the timescale over which the method used operates in relation to the phase of the plankton bloom. Here we use three techniques to estimate PEeff in situ in the North Atlantic: the radioactive pairs 238U-234Th and 210Pb-210Po, and neutrally buoyant sediment traps (PELAGRA). Order of magnitude discrepancies between values of PEeff obtained from PELAGRA relative to those obtained when applying both radionuclide techniques. POC export fluxes and satellite-derived PP suggest that this results from the differing time scales covered by the three methods and the timing of observations relative to the bloom peak. None of the three techniques are considered inappropriate to estimate PEeff in situ, but bloom dynamics must be considered in relation to the duration over which a particular sampling method operates. Our results suggest a strong seasonal variability in PEeff, most likely controlled by the community structure and hydrographic conditions. This implies that the methods used (specifically their inherent timescales) and the phase of the bloom at the time of sampling must be carefully taken into account to ensure that individual PEeff estimates compiled from different sources to construct global export algorithms are comparable.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-07-27
    Description: The Southern Ocean (SO) is an important CO2 reservoir, some of which enters via the production, sinking, and remineralization of organic matter. Recent work suggests that the fraction of production that sinks is inversely related to production in the SO, a suggestion that we confirm from 20 stations in the Scotia Sea. The efficiency with which exported material is transferred to depth (transfer efficiency) is believed to be low in high-latitude systems. However, our estimates of transfer efficiency are bimodal, with stations in the seasonal ice zone showing intense losses and others displaying increases in flux with depth. Zooplankton fecal pellets dominated the organic carbon flux and at stations with transfer efficiency 〉100% fecal pellets were brown, indicative of fresh phytodetritus. We suggest that active flux mediated by zooplankton vertical migration and the presence of sea ice regulates the transfer of organic carbon into the oceans interior in the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...