GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
Document type
Keywords
Language
Years
Year
  • 1
    Publication Date: 2022-03-24
    Description: Since 2012 August, the Radiation Assessment Detector (RAD) on the Curiosity rover has been characterizing the Martian surface radiation field which is essential in preparation for future crewed Mars missions. RAD observed radiation dose is influenced by variable topographical features as the rover traverses through the terrain. In particular, while Curiosity was parked near a butte in the Murray Buttes area, we find a decrease of the dose rate by (5 ± 1)% as 19% of the sky was obstructed, versus 10% in an average reference period. Combining a zenith‐angle‐dependent radiation model and the rover panoramic visibility map leads to a predicted reduction of the downward dose by ∼12% due to the obstruction, larger than the observed decrease. With the hypothesis that this difference is attributable to albedo radiation coming from the butte, we estimate the (flat‐terrain) albedo radiation to be about 19% of the total surface dose.
    Description: Plain Language Summary: Interplanetary space is filled with energetic particles that can affect the health of astronauts, for example, by causing late‐arising cancer and possibly hereditary diseases. Mars lacks a global magnetic field and its atmosphere is very thin compared to Earth's. Thus its surface is exposed to such space radiation which presents risks to future humans on Mars. Mitigation strategies could include using natural geological structures on Mars, for example, cave skylights and lava tubes and even simple buttes, for protection. The Radiation Assessment Detector (RAD) on the Curiosity rover has observed a decrease of the radiation absorbed dose rate by (5 ± 1)% while Curiosity was parked near a butte. This provides the first direct illustration that Mars's surface features may serve as potential radiation shelters for future missions. However, when exploiting such shielding possibilities, the secondary radiation generated in the terrain of Mars that is, emitted backwards must also be considered. Combining the RAD observation with a radiation transport model, we derive such “reflected” radiation dose on a flat terrain to be about 19% of the total surface dose.
    Description: Key Points: The Martian surface radiation is influenced by topographical features. The surface downward radiation dose of particles traversing through the atmosphere depends on the zenith angle. The surface upward radiation dose is about 19% of the total dose.
    Description: Strategic Priority Program of CAS
    Description: NSFC
    Description: CNSA pre‐research project on civil aerospace technologies
    Description: NASA, Jet Propulsion Laboratory (JPL) http://dx.doi.org/10.13039/100006196
    Description: Deutsches Zentrum für Luft‐und Raumfahrt (DLR) http://dx.doi.org/10.13039/501100002946
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-17
    Description: In preparation for future human habitats on Mars, it is important to understand the Martian radiation environment. Mars does not have an intrinsic magnetic field and Galactic cosmic ray (GCR) particles may directly propagate through and interact with its atmosphere before reaching the surface and subsurface of Mars. However, Mars has many high mountains and low‐altitude craters where the atmospheric thickness can be more than 10 times different from one another. We thus consider the influence of the atmospheric depths on the Martian radiation levels including the absorbed dose, dose equivalent and body effective dose rates induced by GCRs at varying heights above and below the Martian surface. The state‐of‐the‐art Atmospheric Radiation Interaction Simulator based on GEometry And Tracking Monte Carlo method has been employed for simulating particle interactions with the Martian atmosphere and terrain. We find that higher surface pressures can effectively reduce the heavy ion contribution to the radiation, especially the biologically weighted radiation quantity. However, enhanced shielding (both by the atmosphere and the subsurface material) can considerably enhance the production of secondary neutrons which contribute significantly to the effective dose. In fact, both neutron flux and effective dose peak at around 30 cm below the surface. This is a critical concern when using the Martian surface material to mitigate radiation risks. Based on the calculated effective dose, we finally estimate some optimized shielding depths, under different surface pressures (corresponding to different altitudes) and various heliospheric modulation conditions. This may serve for designing future Martian habitats.
    Description: Plain Language Summary: Thanks to Earth's magnetic field and atmosphere, high‐energy cosmic particles can be efficiently shielded from causing radiation risks for humans on Earth. However, for crewed space missions, in particular long‐term missions to Mars, space radiation is a major risk for the health of astronauts. Mars does not have an intrinsic global magnetic field and its atmosphere is too thin to effectively shield against radiation. Here, we model the Martian radiation environment induced by omnipresent cosmic rays in Mars's atmosphere and terrain. Given that Mars has many high mountains and low‐altitude craters where the atmospheric thickness can be more than 10 times different from one another, we also consider different model setups with different atmospheric profiles. We find that with more shielding the heavy ion contribution to the radiation is reduced while the neutron contribution is enhanced. For a given threshold of the annual biologically weighted radiation effective dose, for example, 100 mSv, the required regolith depth ranges between about 1 and 1.6 m. At a deep crater where the surface pressure is higher, the needed extra regolith shielding is slightly smaller. Our study may serve for mitigating radiation risks when designing future Martian habitats using natural surface material as shielding protection.
    Description: Key Points: We calculate dose, dose equivalent, and effective dose rates induced by various components of galactic cosmic rays on and below Mars surface. Surface pressure which is related to geographic altitude influences the surface and subsurface radiation level. Subsurface secondary neutrons contribute significantly to the effective dose and are a critical concern for radiation risks on Mars.
    Description: CAS strategic priority program
    Description: National Natural Science Foundation of China (NSFC) http://dx.doi.org/10.13039/501100001809
    Description: CNSA pre‐research Project on Civil Aerospace Technologies
    Description: The Key Research Program of the Chinese Academy of Sciences
    Description: German Aerospace Center (DLR)
    Description: https://et-wiki.physik.uni-kiel.de/atris/atris
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...