GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
Document type
Language
Year
  • 1
    Publication Date: 2022-01-27
    Description: Subduction initiation induced by a hot and buoyant mantle plume head is unique among proposed subduction initiation mechanisms because it does not require pre-existing weak zones or other forces for lithospheric collapse. Since recognition of the first evidence of subduction nucleation induced by a mantle plume in the Late Cretaceous Caribbean realm, the number of studies focusing on other natural examples has grown. Here, we review numerical and physical modeling and geological-geochemical studies which have been carried out thus far to investigate onset of a new subduction zone caused by impingement of a mantle plume head. As geological-geochemical data suggests that plume-lithosphere interactions have long been important - spanning from the Archean to the present - modeling studies provide valuable information on the spatial and temporal variations in lithospheric deformation induced by these interactions. Numerical and physical modeling studies, ranging from regional to global scales, illustrate the key role of plume buoyancy, lithospheric strength and magmatic weakening above the plume head on plume-lithosphere interactions. Lithospheric/crustal heterogeneities, pre-existing lithospheric weak zones and external compressional/extensional forces may also change the deformation regime caused by plume-lithosphere interaction.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-01
    Description: Deformation in the orogen-foreland system of the southern Central Andes between 33° and 36° S varies in style, locus, and amount of shortening. The controls that determine these spatially variable characteristics have largely remained unknown, yet both the subduction of the oceanic Nazca plate and the strength of the South American plate have been invoked to play a major role. While the parameters governing the subduction processes are similar between 33° and 36° S, the lithospheric strength of the upper plate is spatially variable due to structures inherited from past geodynamic regimes and associated compositional differences in the South American plate. Regional Mesozoic crustal horizontal extension generated a 〈 40-km-thick crust with a more mafic composition in the lower crust south of 35°S; north of this latitude, however, a more felsic lower crust is inferred from geophysical data. To assess the influence of different structural and compositional heterogeneities on the style of deformation in the southern Central Andes, we developed a suite of geodynamic models of intraplate lithospheric shortening for two E–W transects (33° 40′ S and 36° S) across the Andes. The models are constrained by local geological and geophysical information. Our results demonstrate a decoupled shortening mode between the brittle upper crust and the ductile lower crust in those areas characterized by a mafic lower crust (36° S transect). In contrast, a more felsic lower crust, such as in the 33° 40′ S transect, results in a coupled shortening mode. Furthermore, we find that differences in lithospheric thickness and the asymmetry of the lithosphere–asthenosphere boundary may promote the formation of a crustal-scale, west-dipping detachment zone that drives the overall deformation and lateral expansion of the orogen. Our study represents the first geodynamic modeling effort in the southern Central Andes aimed at understanding the roles of heterogeneities (crustal composition and thickness) at the scale of the entire lithosphere as well as the geometry of the lithosphere–asthenosphere boundary with respect to mountain building.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...