GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-12-01
    Description: The Overturning in the Subpolar North Atlantic Program (OSNAP) is an international effort started in 2014 dedicated to achieving a better understanding of the link between dense-water formation and the meridional overturning circulation in the high-latitude North Atlantic. Moorings, gliders, and subsurface acoustically-tracked RAFOS floats have been used to collect temperature, salinity, and current data across the Labrador Sea, Irminger Sea, Reykjanes Ridge, Iceland Basin, Rockall-Hatton Plateau, and Rockall Trough. The specific objective of the OSNAP float program is to gather information on the pathways of the dense overflow waters transported by the deep limb of the overturning circulation and assess the connection of those pathways with currents observed crossing the OSNAP mooring line. This data report details the observations collected by 148 floats that were deployed for OSNAP during the summers of 2014, 2015, 2016 and 2017. Deployment locations were in the Iceland Basin, Irminger Sea, and in the Charlie-Gibbs Fracture Zone. Mission lengths ranged from 540-730 days, and the floats were ballasted to passively drift at a fixed pressure of either 1800, 2000, 2200, 2500, or 2800 dbar to tag the deep overflow water masses of the subpolar North Atlantic (Iceland-Scotland and Denmark Strait Overflow Waters).
    Description: Funding was provided by the National Science Foundation under Grant No. OCE-1259618 & OCE-1756361
    Keywords: RAFOS ; Trajectory ; Subpolar North Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-01
    Description: This is the final data report for all acoustically-tracked subsurface RAFOS floats deployed for the “Deep Water Dispersion Experiment: RAFOS Float Study in Support of Analysis of Possible Consequences of Large Scale Oil-Spills under Various Scenarios” (DWDE). This study is part of the larger program “Deep and Shallow Particle Dispersion and Biological Connectivity over the Continental Slope in the Western Gulf of Mexico”, of the Gulf of Mexico Research Consortium (CIGoM). The objective of the DWDE project was to measure and evaluate the ocean circulation at various depths in order to estimate the rates and pathways by which a passive tracer (e.g. pollutant, nutrients, etc.) would spread. The experiment consisted of the deployment 93 RAFOS floats and five sound source moorings (needed for tracking the floats underwater) over the course of five cruises, between June 2016 and January 2019, in the Perdido region of the Gulf of Mexico. The floats were deployed nearly simultaneously at stacked depths of 300 and 1500 dbar, in sets of 2-4 instruments per station, for calculating dispersion statistics. Mission lengths for the floats were set to ~12 to 18 months. Included in this report are cruise summaries, statistics and notes on sound source and float performance, sound source drift calculations, description of the RAFOS float data processing steps, and figures.
    Description: Funding was provided by the Mexican National Council for Science and Technology - Mexican Ministry of Energy - Hydrocarbon Fund, project 201441. This work was completed through a contract by the Center for Scientific Research and Higher Education at Ensenada (CICESE) under Grant No. 188355 to the Woods Hole Oceanographic Institution.
    Keywords: RAFOS ; Trajectory ; Gulf of Mexico ; Deep Water Dispersion Experiment ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-12-01
    Description: The Overturning in the Subpolar North Atlantic Program (OSNAP) is an international effort started in 2014 dedicated to achieving a better understanding of the link between dense-water formation and the meridional overturning circulation in the high-latitude North Atlantic. Moorings, gliders, and subsurface acoustically-tracked RAFOS floats have been used to collect temperature, salinity, and current data across the Labrador Sea, Irminger Sea, Reykjanes Ridge, Iceland Basin, Rockall-Hatton Plateau, and Rockall Trough. The specific objective of the OSNAP float program is to gather information on the pathways of the dense overflow waters transported by the deep limb of the overturning circulation and assess the connection of those pathways with currents observed crossing the OSNAP mooring line. This data report details the observations collected by 148 floats that were deployed for OSNAP during the summers of 2014, 2015, 2016 and 2017. Deployment locations were in the Iceland Basin, Irminger Sea, and in the Charlie-Gibbs Fracture Zone. Mission lengths ranged from 540-730 days, and the floats were ballasted to passively drift at a fixed pressure of either 1800, 2000, 2200, 2500, or 2800 dbar to tag the deep overflow water masses of the subpolar North Atlantic (Iceland-Scotland and Denmark Strait Overflow Waters).
    Description: Funding was provided by the National Science Foundation under Grant No. OCE-1259618 & OCE-1756361
    Keywords: RAFOS ; Trajectory ; Subpolar North Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-05
    Description: As part of the Overturning in the Subpolar North Atlantic Program (OSNAP), 137 acoustically tracked RAFOS floats, using 13 moored sound sources, were deployed at five deployment locations (four around the Reykjanes Ridge and one east of Greenland), between 2014 and 2019. The floats were deployed within 200m of the sea floor (1800-2800m) and with density greater than 27.8. They recorded position, temperature, and pressure once a day.
    Description: Funding source: National Science Foundation Grant OCE-859618
    Keywords: Subpolar North Atlantic ; Meridional Overturning Circulation ; RAFOS ; Mid-Atlantic Ridge ; Greenland ; Irminger Sea ; Labrador Sea ; Iceland Basin
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(10), (2020): 2849-2871, https://doi.org/10.1175/JPO-D-20-0086.1.
    Description: The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s−1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.
    Description: A.P., R.S.P., F.B., D.J.T., and A.L.R. were funded by Grants OCE-1259618 and OCE-1756361 from the National Science Foundation. I.L.B, F.S., and J.H. were supported by U.S. National Science Foundation Grants OCE-1258823 and OCE-1756272. Mooring data from MA2 was funded by the European Union 7th Framework Programme (FP7 2007-2013) under Grant 308299 (NACLIM) and the Horizon 2020 research and innovation program under Grant 727852 (Blue-Action). J.K. and M.O. acknowledge EU Horizon 2020 funding Grants 727852 (Blue-action) and 862626 (EuroSea) and from the German Ministry of Research and Education (RACE Program). G.W.K.M. acknowledges funding from the Natural Sciences and Engineering Research Council.
    Keywords: Boundary currents ; Convection ; Deep convection ; Transport ; In situ oceanic observations ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(10),(2021): e2021JC017375.,https://doi.org/10.1029/2021JC017375.
    Description: The Deep Water Horizon oil spill dramatically impacted the Gulf of Mexico from the seafloor to the surface. While dispersion of contaminants at the surface has been extensively studied, little is known about deep water dispersion properties. This study describes the results of the Deep Water Dispersion Experiment (DWDE), which consisted of the release of surface drifters and acoustically tracked RAFOS floats drifting at 300 and 1,500 dbar in the Gulf of Mexico. We show that surface diffusivity is elevated and decreases with depth: on average, diffusivity at 1,500 dbar is 5 times smaller than at the surface, suggesting that the dispersion of contaminants at depth is a significantly slower process than at the surface. This study also examines the turbulent regimes driving the dispersion, although conflicting evidences and large uncertainties do not allow definitive conclusions. At all depths, while the growth of dispersion and kurtosis with time supports the possibility of an exponential regime at very short time scales, indicating that early dispersion is nonlocal, finite size Lyapunov exponents support the hypothesis of local dispersion, suggesting that eddies of size comparable to the initial separation (6 km), may dominate the early dispersion. At longer time scales, the quadratic growth of dispersion is indicative of a ballistic regime, where a mean shear flow would be the dominating process. Examination of the along- and across-bathymetry components of float velocities supports the idea that boundary currents could be the source for this shear dispersion.
    Description: This research has been funded by the Mexican National Council for Science and Technology - Mexican Ministry of Energy - Hydrocarbon Fund, project 201441. This is a contribution of the Gulf of Mexico Research Consortium (CIGoM).
    Description: 2022-03-18
    Keywords: Lagrangian experiment ; turbulence ; RAFOS ; relative dispersion ; Gulf of Mexico ; Deep Water Dispersion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...