GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hydrothermal fluid  (1)
  • Siderophores
  • 2020-2023  (2)
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, H. T., Hsieh, C. C., Repeta, D. J., & Rappé, M. S. Sampling of basement fluids via circulation obviation retrofit kits (CORKs) for dissolved gases, fluid fixation at the seafloor, and the characterization of organic carbon. Methodsx, 7, (2020): 101033, doi:10.1016/j.mex.2020.101033.
    Description: The advanced instrumented GeoMICROBE sleds (Cowen et al., 2012) facilitate the collection of hydrothermal fluids and suspended particles in the subseafloor (basaltic) basement through Circulation Obviation Retrofit Kits (CORKs) installed within boreholes of the Integrated Ocean Drilling Program. The main components of the GeoMICROBE can be converted into a mobile pumping system (MPS) that is installed on the front basket of a submersible or remotely-operated-vehicle (ROV). Here, we provide details of a hydrothermal fluid-trap used on the MPS, through which a gastight sampler can withdraw fluids. We also applied the MPS to demonstrate the value of fixing samples at the seafloor in order to determine redox-sensitive dissolved iron concentrations and speciation measurements. To make the best use of the GeoMICROBE sleds, we describe a miniature and mobile version of the GeoMICROBE sled, which permits rapid turn-over and is relatively easy for preparation and operation. Similar to GeoMICROBE sleds, the Mobile GeoMICROBE (MGM) is capable of collecting fluid samples, filtration of suspended particles, and extraction of organics. We validate this approach by demonstrating the seafloor extraction of hydrophobic organics from a large volume (247L) of hydrothermal fluids. • We describe the design of a hydrothermal fluid-trap for use with a gastight sampler, as well as the use of seafloor fixation, through ROV- or submersible assisted mobile pumping systems. • We describe the design of a Mobile GeoMICROBE (MGM) that enhances large volume hydrothermal fluid sampling, suspended particle filtration, and organic matter extraction on the seafloor. • We provide an example of organic matter extracted and characterized from hydrothermal fluids via a MGM.
    Description: We dedicate this work to Dr. James P. Cowen, who had envisioned and constructed the integrated instrumentation, GeoMICROBE, to monitor the sub-basement biosphere. We thank the chief scientists, captains, crews, and science teams on board R/V Atlantis cruises AT15-35, AT15-51, AT15-66, AT18-07, MSM20-5, AT26-03, and AT26-18, and the pilots and crews of ROV Jason II and HOV Alvin. We thank our student assistants, Natalie Hamada, Kathryn Hu, Ryan Matzumoto, Everette Omori, and Fan-Chieh Chuang. This work was supported by the National Science Foundation-Microbial Observatory Project (NSF-MCB06-04014 to J. P. Cowen), Center for Dark Energy Biosphere Investigations (C-DEBI; NSF award OCE-0939564 to M. S. Rappé), NSF award OCE-1260723 (to M. S. Rappé), and the Ministry of Science and Technology of Taiwan award (MOST 105-2119-M-002-034, MOST 107-2611-M-002-002, MOST 108-2611-M-002-006, and MOST109-2611-M-002-008 to H.-T. Lin). Ministry of Education (MOE) Republic of China (Taiwan) 109L892601 to H.-T. Lin. NSF award OCE-1634080 (to D. J. Repeta), the Simons Foundation-Simons Collaboration on Ocean Processes and Ecology (SCOPE) award 329108 (to D. J. Repeta), the Gordon and Betty Moore Foundation award 6000 (to D. J. Repeta). This paper is SOEST contribution number 11121, HIMB contribution 1804 and C-DEBI contribution number 543.
    Keywords: GeoMICROBE ; Hydrothermal fluid ; Crustal fluid ; Mobile pumping system ; Helium ; Methane ; Dissolved organic matter ; Extraction and preconcentration ; Deep subseafloor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, J., Boiteau, R. M., Babcock-Adams, L., Acker, M., Song, Z., McIlvin, M. R., & Repeta, D. J. Element-selective targeting of nutrient metabolites in environmental samples by inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry. Frontiers in Marine Science, 8, (2021): 630494, https://doi.org/10.3389/fmars.2021.630494.
    Description: Metabolites that incorporate elements other than carbon, nitrogen, hydrogen and oxygen can be selectively detected by inductively coupled mass spectrometry (ICPMS). When used in parallel with chromatographic separations and conventional electrospray ionization mass spectrometry (ESIMS), ICPMS allows the analyst to quickly find, characterize and identify target metabolites that carry nutrient elements (P, S, trace metals; “nutrient metabolites”), which are of particular interest to investigations of microbial biogeochemical cycles. This approach has been applied to the study of siderophores and other trace metal organic ligands in the ocean. The original method used mass search algorithms that relied on the ratio of stable isotopologues of iron, copper and nickel to assign mass spectra collected by ESIMS to metabolites carrying these elements detected by ICPMS. However, while isotopologue-based mass assignment algorithms were highly successful in characterizing metabolites that incorporate some trace metals, they do not realize the whole potential of the ICPMS/ESIMS approach as they cannot be used to assign the molecular ions of metabolites with monoisotopic elements or elements for which the ratio of stable isotopes is not known. Here we report a revised ICPMS/ESIMS method that incorporates a number of changes to the configuration of instrument hardware that improves sensitivity of the method by a factor of 4–5, and allows for more accurate quantitation of metabolites. We also describe a new suite of mass search algorithms that can find and characterize metabolites that carry monoisotopic elements. We used the new method to identify siderophores in a laboratory culture of Vibrio cyclitrophicus and a seawater sample collected in the North Pacific Ocean, and to assign molecular ions to monoisotopic cobalt and iodine nutrient metabolites in extracts of a laboratory culture of the marine cyanobacterium Prochorococcus MIT9215.
    Description: This work was generously supported by the National Science Foundation grant OCE-1829761 to RB and OCE-1356747 and -1736280 to DR. DR also received generous support from the Simons Foundation Life Sciences Project Award 49476.
    Keywords: LC-MS ; Algorithm ; Environmental metabolomics ; Trace metal ; Siderophores
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...