GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chukchi Sea  (2)
  • Ammonium; Ammonium, standard deviation; Auto-analyzer II, Technicon; Carbon, organic, particulate; Carbon, organic, particulate, integrated; Carbon, organic, particulate, standard deviation; Carbon dioxide; Carbon dioxide, standard deviation; CORSACS II; DATE/TIME; Date/time end; Event label; International Polar Year (2007-2008); IPY; Mass spectrometer Finnigan MAT 252; Nathaniel B. Palmer; NBP0608; NBP0608_all; NBP9807; NBP9807_all; NBP9807_early; NBP9807_late; Nitrate; Nitrate, standard deviation; Nitrite; Nitrite, standard deviation; Nitrogen, inorganic; Nitrogen, inorganic, standard deviation; Nitrogen, particulate; Nitrogen, particulate, standard deviation; Phosphate; Phosphate, standard deviation; ROAVERRS; Ross Sea; Salinity, brine; Salinity, standard deviation; Sample amount, subset; Sample type; Silicate; Silicate, standard deviation; SNOW; Snow/ice sample; δ13C, carbon dioxide, atmospheric; δ13C, carbon dioxide, standard deviation; δ13C, particulate organic carbon; δ13C, standard deviation
  • 2020-2023  (2)
Document type
Keywords
  • Chukchi Sea  (2)
  • Ammonium; Ammonium, standard deviation; Auto-analyzer II, Technicon; Carbon, organic, particulate; Carbon, organic, particulate, integrated; Carbon, organic, particulate, standard deviation; Carbon dioxide; Carbon dioxide, standard deviation; CORSACS II; DATE/TIME; Date/time end; Event label; International Polar Year (2007-2008); IPY; Mass spectrometer Finnigan MAT 252; Nathaniel B. Palmer; NBP0608; NBP0608_all; NBP9807; NBP9807_all; NBP9807_early; NBP9807_late; Nitrate; Nitrate, standard deviation; Nitrite; Nitrite, standard deviation; Nitrogen, inorganic; Nitrogen, inorganic, standard deviation; Nitrogen, particulate; Nitrogen, particulate, standard deviation; Phosphate; Phosphate, standard deviation; ROAVERRS; Ross Sea; Salinity, brine; Salinity, standard deviation; Sample amount, subset; Sample type; Silicate; Silicate, standard deviation; SNOW; Snow/ice sample; δ13C, carbon dioxide, atmospheric; δ13C, carbon dioxide, standard deviation; δ13C, particulate organic carbon; δ13C, standard deviation
  • Southern Ocean  (2)
  • Amundsen Sea  (1)
  • Barrow Canyon  (1)
  • +
Years
Year
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(5), (2021): e2020JC017091, https://doi.org/10.1029/2020JC017091.
    Description: A region of exceptionally high macrofaunal benthic biomass exists in Barrow Canyon, implying a carbon export process that is locally concentrated. Here we offer an explanation for this benthic “hotspot” using shipboard data together with a set of dynamical equations. Repeat occupations of the Distributed Biological Observatory transect in Barrow Canyon reveal that when the northward flow is strong and the density front in the canyon is sharp, plumes of fluorescence and oxygen extend from the pycnocline to the seafloor in the vicinity of the hotspot. By solving the quasi-geostrophic omega equation with an analytical flow field fashioned after the observations, we diagnose the vertical velocity in the canyon. This reveals that, as the along stream flow converges into the canyon, it drives a secondary circulation cell with strong downwelling on the cyclonic side of the northward flow. The downwelling quickly advects material from the pycnocline to the seafloor in a vertical plume analogous to those seen in the observations. The plume occurs only when the phytoplankton reside in the pycnocline, since the near-surface vertical velocity is weak, also consistent with the observations. Using a wind-based proxy to represent the strength of the northward flow and hence the pumping, in conjunction with a satellite-derived phytoplankton source function, we construct a time series of carbon supply to the bottom of Barrow Canyon.
    Description: This work was funded by National Science Foundation grants PLR-1504333 and OPP-1733564 (Robert S. Pickart, Frank Bahr), OPP-1822334 (Michael A. Spall), PLR-1304563 (Kevin R. Arrigo), OPP-1204082 and OPP-1702456 (Jacqueline M. Grebmeier); National Oceanic and Atmospheric Administration grants NA14OAR4320158 and NA19OAR4320074 (Robert S. Pickart, Peigen Lin, Leah T. McRaven), CINAR-22309.02 (Jacqueline M. Grebmeier).
    Keywords: Barrow Canyon ; Benthic fauna ; Chukchi Sea ; Dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 7153– 7177, doi: 10.1029/2019JC015261.
    Description: Data from a late spring survey of the northeast Chukchi Sea are used to investigate various aspects of newly ventilated winter water (NVWW). More than 96% of the water sampled on the shelf was NVWW, the saltiest (densest) of which tended to be in the main flow pathways on the shelf. Nearly all of the hydrographic profiles on the shelf displayed a two‐layer structure, with a surface mixed layer and bottom boundary layer separated by a weak density interface (on the order of 0.02 kg/m3). Using a polynya model to drive a one‐dimensional mixing model, it was demonstrated that, on average, the profiles would become completely homogenized within 14–25 hr when subjected to the March and April heat fluxes. A subset of the profiles would become homogenized when subjected to the May heat fluxes. Since the study domain contained numerous leads within the pack ice—many of them refreezing—and since some of the measured profiles were vertically uniform in density, this suggests that NVWW is formed throughout the Chukchi shelf via convection within small openings in the ice. This is consistent with the result that the salinity signals of the NVWW along the central shelf pathway cannot be explained solely by advection from Bering Strait or via modification within large polynyas. The local convection would be expected to stir nutrients into the water column from the sediments, which explains the high nitrate concentrations observed throughout the shelf. This provides a favorable initial condition for phytoplankton growth on the Chukchi shelf.
    Description: The authors are indebted to Commanding Officer John Reeves, Executive Officer Gregory Stanclik, Operations Officer Jacob Cass, and the entire crew of the USCGC Healy for their hard work and dedication in making the SUBICE cruise a success. We also acknowledge Scott Hiller for his assistance with Healy's meteorological data. We thank an anonymous reviewer for helpful input that improved the paper. Funding for A. P., R. P., C. N., and F. B. was provided by the National Science Foundation (NSF) under grant PLR‐1303617. K. M. was funded by the Natural Sciences and Engineering Research Council of Canada. K. V. acknowledges the Bergen Research Foundation under Grant BFS2016REK01. K. A. was supported by the NSF grant PLR‐1304563. The CTD and shipboard ADCP data are available from https://www.rvdata.us/search/cruise/HLY1401, and the nutrient data can be accessed from https://arcticdata.io/catalog/view/doi:10.18739/A2RG3Z and http://ocean.stanford.edu/subice/. The shipboard meteorological data reside at http://ocean.stanford.edu/subice/.
    Description: 2020-04-14
    Keywords: Brine rejection ; Chukchi Sea ; Convection ; Winter water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...