GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI  (2)
  • 2020-2023  (2)
Document type
Years
Year
  • 1
    Publication Date: 2022-06-14
    Description: The RST (Robust Satellite Techniques) approach is a multi-temporal scheme of satellite data analysis widely used to investigate and monitor thermal volcanic activity from space through high temporal resolution data from sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In this work, we present the results of the preliminary RST algorithm implementation to thermal infrared (TIR) data, at 90 m spatial resolution, from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Results achieved under the Google Earth Engine (GEE) environment, by analyzing 20 years of satellite observations over three active volcanoes (i.e., Etna, Shishaldin and Shinmoedake) located in different geographic areas, show that the RST-based system, hereafter named RASTer, detected a higher (around 25% more) number of thermal anomalies than the well-established ASTER Volcano Archive (AVA). Despite the availability of a less populated dataset than other sensors, the RST implementation on ASTER data guarantees an efficient identification and mapping of volcanic thermal features even of a low intensity level. To improve the temporal continuity of the active volcanoes monitoring, the possibility of exploiting RASTer is here addressed, in the perspective of an operational multi-satellite observing system. The latter could include mid-high spatial resolution satellite data (e.g., Sentinel-2/MSI, Landsat-8/OLI), as well as those at higher-temporal (lower-spatial) resolution (e.g., EOS/MODIS, Suomi-NPP/VIIRS, Sentinel-3/SLSTR), for which RASTer could provide useful algorithm’s validation and training dataset.
    Description: Published
    Description: 4201
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-14
    Description: On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly at a time interval of about 2–3 days between each other. The paroxysms produced lava fountains (up to 1000 m high), huge tephra columns (up to 10–11 km above sea level), lava and pyroclastic flows, expanding 2–4 km towards East and South. The last event, which was characterised by about 3 days of almost continuous eruptive activity (30 March–1 April), generated the most lasting lava fountain (8–9 h). During some paroxysms, volcanic ash led to the temporary closure of the Vincenzo Bellini Catania International Airport. Heavy ash falls then affected the areas surrounding the volcano, in some cases reaching zones located hundreds of kilometres away from the eruptive vent. In this study, we investigate the Mt. Etna paroxysms mentioned above through a multi-platform satellite system. Results retrieved from Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Spinning Enhanced Visible and Infrared Imager (SEVIRI), starting from outputs of the Robust Satellite Techniques for Volcanoes (RSTVOLC), indicate that the 17th paroxysm (31 March–1 April) was the most powerful, with values of radiative power estimated around 14 GW. Moreover, by the analysis of SEVIRI data, we found that the 5th and 17th paroxysms were the most energetic. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), providing shortwave infrared (SWIR) data at 20/30 m spatial resolution, enabled an accurate localisation of active vents and the mapping of the areas inundated by lava flows. In addition, according to the Normalized Hotspot Indices (NHI) tool, the 1st and 3rd paroxysm (18 and 28 February) generated the largest thermal anomaly at Mt. Etna after June 2013, when Landsat-8 OLI data became available. Despite the impact of clouds/plumes, pixel saturation, and other factors (e.g., satellite viewing geometry) on thermal anomaly identification, the used multi-sensor approach allowed us to retrieve quantitative information about the 17 paroxysms occurring at Mt. Etna. This approach could support scientists in better interpreting changes in thermal activity, which could lead to future and more dangerous eruptions.
    Description: Published
    Description: 3074
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...