GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • John Wiley & Sons Inc.  (1)
  • Oxford University Press - The Royal Astronomical Society  (1)
  • 2020-2023  (2)
  • 1
    Publication Date: 2022-04-21
    Description: To constrain seismic anisotropy under and around the Alps in Europe, we study SKS shear wave splitting from the region densely covered by the AlpArray seismic network. We apply a technique based on measuring the splitting intensity, constraining well both the fast orientation and the splitting delay. Four years of teleseismic earthquake data were processed, from 723 temporary and permanent broad-band stations of the AlpArray deployment including ocean-bottom seismometers, providing a spatial coverage that is unprecedented. The technique is applied automatically (without human intervention), and it thus provides a reproducible image of anisotropic structure in and around the Alpine region. As in earlier studies, we observe a coherent rotation of fast axes in the western part of the Alpine chain, and a region of homogeneous fast orientation in the Central Alps. The spatial variation of splitting delay times is particularly interesting though. On one hand, there is a clear positive correlation with Alpine topography, suggesting that part of the seismic anisotropy (deformation) is caused by the Alpine orogeny. On the other hand, anisotropic strength around the mountain chain shows a distinct contrast between the Western and Eastern Alps. This difference is best explained by the more active mantle flow around the Western Alps. The new observational constraints, especially the splitting delay, provide new information on Alpine geodynamics. © 2021 The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society.
    Description: Published
    Description: 1996–2015
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-15
    Description: A new matrix-matched reference material has been developed – NFHS-2-NP (NIOZ Foraminifera House Standard-2-Nano-Pellet) – with element mass fractions, and isotope ratios resembling that of natural foraminiferal calcium carbonate. A 180–355 µm size fraction of planktic foraminifera was milled to nano-particles and pressed to pellets. We report reference and information values for mass fractions of forty-six elements measured by six laboratories as well as for 87Sr/86Sr (three laboratories), δ13C, δ18O (five laboratories) and 206,207,208Pb/204Pb isotope ratios (one laboratory) determined by ICP-MS, ICP-OES, MC-ICP-MS, isotope ratio mass spectrometry, WD-XRF and TIMS. Inter- and intra-pellet elemental homogeneity was tested using multiple LA-ICP-MS analyses in two laboratories applying spot sizes of 60 and 70 µm. The LA-ICP-MS results for most of the elements relevant as proxies for palaeoclimate research show RSD values 〈 3%, demonstrating a satisfactory homogeneous composition. Homogeneity of 87Sr/86Sr ratios of the pellet was verified by repeated LA-MC-ICP-MS by two laboratories. Information values are reported for Pb isotope ratios and δ13C, δ18O values. The homogeneity for these isotope systems remains to be tested by LA-MC-ICP-MS and secondary-ion mass spectrometry. Overall, our results confirm the suitability of NFHS-2-NP for calibration or monitoring the quality of in situ geochemical techniques.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...