GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (2)
  • Wiley  (2)
  • 2020-2023  (4)
  • 1
    Publication Date: 2022-08-15
    Description: The sinking of carbon fixed via net primary production (NPP) into the ocean interior is an important part of marine biogeochemical cycles. NPP measurements follow a log-normal probability distribution, meaning NPP variations can be simply described by two parameters despite NPP's complexity. By analyzing a global database of open ocean particle fluxes, we show that this log-normal probability distribution propagates into the variations of near-seafloor fluxes of particulate organic carbon (POC), calcium carbonate, and opal. Deep-sea particle fluxes at subtropical and temperate time-series sites follow the same log-normal probability distribution, strongly suggesting the log-normal description is robust and applies on multiple scales. This log-normality implies that 29% of the highest measurements are responsible for 71% of the total near-seafloor POC flux. We discuss possible causes for the dampening of variability from NPP to deep-sea POC flux, and present an updated relationship predicting POC flux from mineral flux and depth.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-15
    Description: Up to 95% of the oceanic primary production is recycled within the upper few hundred meters of the water column. Marine snow and zooplankton fecal pellets in the upper water column are often recycled at rates exceeding those measured for microbial degradation, suggesting that zooplankton might be important for flux attenuation of particulate organic carbon in the upper ocean. However, direct evidence for interactions between zooplankton and settling aggregates are still rare. We investigated the importance of zooplankton aggregate feeding for carbon flux attenuation in the upper ocean by determining aggregate ingestion rates and feeding behavior on settling aggregates by the dominant Arctic filter-feeding copepods Calanus spp. and Pseudocalanus spp. Both genera were observed to detect and feed on settling aggregates. Using in situ zooplankton and aggregate abundances in combination with the measured aggregate feeding rates, we calculated that 60–67% of the total carbon flux attenuation at three Arctic locations could be explained by Calanus spp. and Pseudocalanus spp. aggregate feeding alone. When including microbial degradation of the settling aggregates, we could explain up to 77% of the total carbon flux attenuation. Our results suggest that by directly ingesting and fragmenting settling marine snow, mesozooplankton are key organisms for flux attenuation in Arctic waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-15
    Description: The attenuation coefficient b is one of the most common ways to describe how strong the carbon flux is attenuated throughout the water column. Therefore, b is an essential input variable in many carbon flux and climate models. Marsay et al. (2015, https://doi.org/10.1073/pnas.1415311112) proposed that the median surface water temperature (0–500 m) may be a predictor of b, but our observations from Arctic waters challenge this hypothesis. We found a highly variable attenuation coefficient (b = 0.43–1.84) in cold Arctic waters (〈4.1 °C). Accordingly, we suggest that water temperature is not a globally valid predictor of the attenuation coefficient. We advocate instead that the phytoplankton composition and especially the relative abundance of diatoms can be used to parametrize the carbon flux attenuation in local and global carbon flux models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-08-15
    Description: Zooplankton and nekton organisms create and destroy particles in manifold ways. They feed on the diverse components of the plankton community and on detrital matter. They disaggregate these components, but also repackage them into fecal pellets. Zooplankton and nekton thereby contributes to the attenuation, but also to the export of vertically settling particles. Many zooplankton and nekton organisms also ascend to the surface layer of the ocean at dusk to feed during the dark hours, and return to midwater at the break of dawn. This diurnal vertical migration (DVM) shuttles organic matter from the surface ocean to deeper layers, where it is metabolized and excreted. This active flux (as opposed to the passive flux of sinking particles) can contribute substantially to the biological pump, the downward export of carbon and nutrients into the oceans interior. Due to their multiple roles in oceanic particle dynamics, zooplankton and nekton organisms can actually be considered the gatekeepers of the biological pump.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...