GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu  (3)
  • Public Library of Science  (1)
  • 2020-2023  (4)
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published inWeber, L., & Apprill, A. Diel, daily, and spatial variation of coral reef seawater microbial communities. PLoS One, 15(3), (2020): e0229442, doi: 10.1371/journal.pone.0229442.
    Description: Reef organisms influence microorganisms within the surrounding seawater, yet the spatial and temporal dynamics of seawater microbial communities located in proximity to corals are rarely investigated. To better understand reef seawater microbial community dynamics over time and space, we collected small-volume seawater samples during the day and night over a 72 hour period from three locations that differed in spatial distance from 5 Porites astreoides coral colonies on a shallow reef in St. John, U.S. Virgin Islands: near-coral (sampled 5 cm horizontally from each colony), reef-depth (sampled 2 m above each colony) and surface seawater (sampled 1 m from the seawater surface). At all time points and locations, we quantified abundances of microbial cells, sequenced small subunit rRNA genes of bacterial and archaeal communities, and measured inorganic nutrient concentrations. Prochlorococcus and Synechococcus cells were consistently elevated at night compared to day and these abundances changed over time, corresponding with temperature, nitrite, and silicate concentrations. During the day, bacterial and archaeal alpha diversity was significantly higher in reef-depth and near-coral seawater compared to the surface seawater, signifying that the reef influences the diversity of the seawater microorganisms. At night, alpha diversity decreased across all samples, suggesting that photosynthesis may favor a more taxonomically diverse community. While Prochlorococcus exhibited consistent temporal rhythmicity, additional taxa were enriched in reef seawater at night compared to day or in reef-depth compared to surface seawater based on their normalized sequence counts. There were some significant differences in nutrient concentrations and cell abundances between reef-depth and near-coral seawater but no clear trends. This study demonstrates that temporal variation supersedes small-scale spatial variation in proximity to corals in reef seawater microbial communities. As coral reefs continue to change in benthic composition worldwide, monitoring microbial composition in response to temporal changes and environmental fluctuations will help discern normal variability from longer lasting changes attributed to anthropogenic stressors and global climate change.
    Description: This work was supported by a National Science Foundation (NSF; https://www.nsf.gov/) Graduate Research Fellowship award to L.Weber. This research was also supported by NSF award OCE-1536782 to A. Mooney, J. Llopiz, and A. Apprill and NSF award OCE-1736288 to A. Apprill. Additionally, this work was supported by the NOAA Cooperative Institutes award NA19OAR4320074 to A.A. and E. Kujawinski and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research to A.A.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-10
    Description: Dataset: Exudate Uptake Incubations - Macronutrient Data
    Description: Incubation experiments were conducted in St. John, US Virgin Islands to investigate the composition of exudates released from different species of benthic organisms, and the response of reef seawater microbial communities to mixed exudates released from different species and to specific metabolites. Exudates were collected from the stony coral Porites astreoides, and the octocoral Gorgonia ventalina after an 8 hour incubation. Reef seawater microbial communities were incubated separately in the presence of exudates from P. astreoides and G. ventalina for 48 hours and samples were collected to monitor changes in macronutrient concentrations. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865193
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1736288
    Keywords: coral reef ; Dissolved Organic Macronutrients ; Dissolved Inorganic Macronutrients ; Organic Carbon ; nitrogen ; biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-10
    Description: Dataset: Exudate Uptake Incubations - Microbial Abundances (Flow Cytometry)
    Description: Incubation experiments were conducted in St. John, US Virgin Islands to investigate the composition of exudates released from different species of benthic organisms, and the response of reef seawater microbial communities to mixed exudates released from different species and to specific metabolites. Exudates were collected from the stony coral Porites astreoides, and the octocoral Gorgonia ventalina after an 8 hour incubation. Reef seawater microbial communities were incubated separately in the presence of exudates from P. astreoides and G. ventalina for 48 hours and samples were collected to monitor changes in microbial abundance via flow cytometry and microbial community composition via 16S rRNA gene sequencing. Complementary Targeted and Untargeted metabolomic data from these incubation experiments is available on the MetaboLights database under accession number MTBLS2855. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865739
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1736288
    Keywords: coral reef ; Planktonic Microorganisms ; Prochlorococcus ; Synechococcus ; Cell Counts ; flow cytometry ; Microbial Communities ; 16S rRNA gene sequencing
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-10
    Description: Dataset: Metabolite Uptake Incubations - Microbial Abundances (Flow Cytometry)
    Description: Pre-filtered reef seawater microbial communities collected from Lameshur Bay, U.S. Virgin Islands were incubated separately in the presence of the individual metabolites riboflavin, pantothenic acid, and caffeine for 24 hours and samples were collected to monitor changes in microbial community composition using 16S rRNA gene sequencing and microbial abundances using flow cytometry. Targeted metabolomic data from these incubations is available on the MetaboLights database under accession number MTBLS3286. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865159
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1736288
    Keywords: coral reef ; Planktonic Microorganisms ; Prochlorococcus ; Synechococcus ; Cell Counts ; flow cytometry ; Microbial Communities ; 16S rRNA gene sequencing
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...