GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (1)
  • Elsevier  (1)
  • 2020-2023  (2)
  • 1
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, S. R., Farrar, J. T., Weller, R. A., Jiang, H., & Pratt, L. J. The land-sea breeze of the Red Sea: observations, simulations, and relationships to regional moisture transport. Journal of Geophysical Research-Atmospheres, 124, (2019): 13803-13825, doi: 10.1029/2019JD031007.
    Description: Unique in situ observations of atmospheric conditions over the Red Sea and the coastal Arabian Peninsula are examined to study the dynamics and regional impacts of the local land‐sea breeze cycle (LSBC). During a 26‐month data record spanning 2008–2011, observed LSBC events occurred year‐round, frequently exhibiting cross‐shore wind velocities in excess of 8 m/s. Observed onshore and offshore features of both the land‐ and sea‐breeze phases of the cycle are presented, and their seasonal modulation is considered. Weather Research and Forecasting climate downscaling simulations and satellite measurements are used to extend the analysis. In the model, the amplitude of the LSBC is significantly larger in the vicinity of the steeper terrain elements encircling the basin, suggesting an enhancement by the associated slope winds. Observed and simulated conditions also reflected distinct gravity‐current characteristics of the intrinsic moist marine air mass during both phases of the LSBC. Specifically, the advance and retreat of marine air mass was directly tied to the development of internal boundary layers onshore and offshore throughout the period of study. Convergence in the lateral moisture flux resulting from this air mass ascending the coastal topography (sea‐breeze phase) as well as colliding with air masses from the opposing coastline (land‐breeze phase) further resulted in cumulous cloud formation and precipitation.
    Description: This study was supported by National Science Foundation (NSF) Grant OCE‐1435665 and National Aeronautics and Space Administration (NASA) Grants 80NSSC18K1494 and NNX14AM71G. Further support for Lawrence Pratt was provided by NSF Grant OCE‐1154641. The authors wish to thank Sarah Gille for insightful conversations related to this work. GLDAS data used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We further acknowledge the use of data and imagery from LANCE FIRMS operated by the NASA/GSFC/Earth Science Data and Information System (ESDIS) with funding provided by NASA/HQ. The in situ data from the WHOI/KAUST mooring is available at a WHOI repository (http://uop.whoi.edu/projects/kaust/form.php) for academic and research purposes. The mooring data collected during the WHOI‐KAUST collaboration was made possible by awards USA00001, USA00002, and KSA00011 to WHOI by the KAUST in the Kingdom of Saudi Arabia. The buoy and tower data collection was a result of the work of the WHOI Upper Ocean Processes Group and staff at KAUST; John Kemp, Jason Smith, Paul Bouchard, Sean Whelan, Yasser Abualnaja, Yasser Kattan, and Abdulaziz Al‐Suwailem all made major contributions.
    Keywords: Sea‐breeze ; Land‐breeze ; Red Sea ; African coast ; Air‐sea ; Observations and modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kantha, L., Weller, R. A., Farrar, J. T., Rahaman, H., & Jampana, V. A note on modeling mixing in the upper layers of the Bay of Bengal: importance of water type, water column structure and precipitation. Deep-Sea Research Part II-Topical Studies in Oceanography, 168, (2019): 104643. doi: 10.1016/j.dsr2.2019.104643.
    Description: Turbulent mixing in the upper layers of the northern Bay of Bengal is affected by a shallow layer overlying the saline waters of the Bay, which results from the huge influx of freshwater from major rivers draining the Indian subcontinent and from rainfall over the Bay during the summer monsoon. The resulting halocline inhibits wind-driven mixing in the upper layers. The brackish layer also alters the optical properties of the water column. Air-sea interaction in the Bay is expected to play a significant role in the intraseasonal variability of summer monsoons over the Indian subcontinent, and as such the sea surface temperature (SST) changes during the summer monsoon are of considerable scientific and societal importance. In this study, data from the heavily instrumented Woods Hole Oceanographic Institution (WHOI) mooring, deployed at 18oN, 89.5oE in the northern Bay from December 2014 to January 2016, are used to drive a one-dimensional mixing model, based on second moment closure model of turbulence, to explore the intra-annual variability in the upper layers. The model results highlight the importance of the optical properties of the upper layers (and hence the penetration of solar insolation in the water column), as well as the temperature and salinity in the upper layers prescribed at the start of the model simulation, in determining the SST in the Bay during the summer monsoon. The heavy rainfall during the summer monsoon also plays an important role. The interseasonal and intraseasonal variability in the upper layers of the Bay are contrasted with those in the Arabian Sea, by the use of the same model but driven by data from an earlier deployment of a WHOI mooring in the Arabian Sea at 15.5 oN, 61.5 oE from December 1994 to December 1995.
    Description: LK was supported by U.S. Office of Naval Research (ONR) MISO/BoB DRI under grant number N00014-17-1-2716. RW and JTF were supported by ONR Grants N00014-13-1-0453 and N00014-17-1-2880, and the WHOI mooring was funded by Grant N00014-13-1-0453. RW was supported by ONR for the 1994–1995 deployment of the surface mooring in the Arabian Sea. HR and VJ wish to thank Dr. SSC Shenoi, the Director of INCOIS and Dr. M Ravichandran, Director, NCPOR for the encouragement and support to carry out this study. This work was supported by the Ministry of Earth Sciences (MoES), Govt. of India. This is also INCOIS Contribution number 349.
    Keywords: Bay of Bengal ; Arabian sea ; Mixing in the upper layers ; Second moment closure ; Turbulence ; WHOI mooring ; OMNI mooring ; Water type ; Solar insolation ; Precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...