GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © Company of Biologists, 2020. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology (2020): jeb.220830, doi: 10.1242/jeb.220830.
    Description: Calanoid copepods, depending on feeding strategy, have different behavioral and biological controls on their movements, thereby responding differently to environmental conditions such as changes in seawater viscosity. To understand how copepod responses to environmental conditions are mediated through physical, physiological, and/or behavioral pathways, we used high-speed microvideography to compare two copepod species, Acartia hudsonica and Parvocalanus crassirostris, under different temperature, viscosity, and dietary conditions. Acartia hudsonica exhibited “sink and wait” feeding behavior and typically responded to changes in seawater viscosity; increased seawater viscosity reduced particle-capture behavior and decreased the size of the feeding current. In contrast, P. crassirostris continuously swam and did not show any behavioral or physical responses to changes in viscosity. Both species showed a physiological response to temperature, with reduced appendage beating frequency at cold temperatures, but this did not generally translate into effects on swimming speed, feeding flux, or active time. Both copepod species swam slower when feeding on diatom rather than dinoflagellate prey, showing that prey type mediates copepod behavior. These results differentiate species-specific behaviors and responses to environmental conditions, which may lead to better understanding of niche separation and latitudinal patterns in copepod feeding and movement strategies.
    Description: This study was supported by the National Science Foundation [OCE1634024 to N.F.; OCE-1433979 and OCE-1559062 to H.J.]; and by Stony Brook University [Graduate Council Fellowship and Turner Fellowship to A.S.T].
    Description: 2021-06-11
    Keywords: Copepods ; Zooplankton ; Seawater viscosity ; Feeding mechanism ; Micro-particle tracking velocimetry (µPTV)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cresswell, T., Metian, M., Fisher, N. S., Charmasson, S., Hansman, R. L., Bam, W., Bock, C., & Swarzenski, P. W. Exploring new frontiers in marine radioisotope tracing - adapting to new opportunities and challenges. Frontiers in Marine Science, 7, (2020): 406, doi:10.3389/fmars.2020.00406.
    Description: Radioisotopes have been used in earth and environmental sciences for over 150 years and provide unique tools to study environmental processes in great detail from a cellular level through to an oceanic basin scale. These nuclear techniques have been employed to understand coastal and marine ecosystems via laboratory and field studies in terms of how aquatic organisms respond to environmental stressors, including temperature, pH, nutrients, metals, organic anthropogenic contaminants, and biological toxins. Global marine issues, such as ocean warming, deoxygenation, plastic pollution, ocean acidification, increased duration, and intensity of toxic harmful algal blooms (HABs), and coastal contamination are all impacting marine environments, thereby imposing various environmental and economic risks. Being able to reliably assess the condition of coastal and marine ecosystems, and how they may respond to future disturbances, can provide vital information for society in the sustainable management of their marine environments. This paper summarizes the historical use of radiotracers in these systems, describes how existing techniques of radioecological tracing can be developed for specific current environmental issues and provides information on emerging issues that would benefit from current and new radiotracer methods. Current challenges with using radioecological tracers and opportunities are highlighted, as well as opportunities to maximize the application of these methods to greatly increase the ability of environmental managers to conduct evidence-based management of coastal and marine ecosystems.
    Description: The IAEA is grateful for the support provided to its Environment Laboratories by the Government of the Principality of Monaco. This contribution was made within the framework of the IAEA CRP on “Applied radioecological tracers to assess coastal and marine ecosystem health” (K41019).
    Keywords: Radionuclides ; Radiotracers ; Radioecology ; Ecosystem condition ; Marine ; Coastal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Although the parameters for contaminant bioaccumulation models most likely vary over time, lack of data makes it impossible to quantify this variability. As a consequence, Monte Carlo models of contaminant bioaccumulation often treat all parameters as having fixed true values that are unknown. This can lead to biased distributions of predicted contaminant concentrations. This article demonstrates this phenomenon with a case study of selenium accumulation in the mussel Mytilus edulis in San Francisco Bay. “Ignorance-only” simulations (in which phytoplankton and bioavailable selenium concentrations are constant over time, but sampled from distributions of field measurements taken at different times), which an analyst might be forced to use due to lack of data, were compared with “variability and ignorance” simulations (sampling phytoplankton and bioavailable selenium concentrations each month). It was found that ignorance-only simulations may underestimate or overestimate the median predicted contaminant concentration at any time, relative to variability and ignorance simulations. However, over a long enough time period (such as the complete seasonal cycle in a seasonal model), treating temporal variability as if it were ignorance at least gave a range of predicted concentrations that enclosed the range predicted by explicit treatment of temporal variability. Comparing the temporal variability in field data with that predicted by simulations may indicate whether the right amount of temporal variability is being included in input variables. Sensitivity analysis combined with biological knowledge suggests which parameters might make important contributions to temporal variability. Temporal variability is potentially more complicated to deal with than other types of stochastic variability, because of the range of time scales over which parameters may vary.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 407 (2000), S. 78-80 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Zebra mussels (Dreissena polymorpha) are widespread and abundant in major freshwater ecosystems in North America, even though the phytoplankton food resources in some of these systems seem to be too low to sustain them. Because phytoplankton biomass is greatly depleted in ecosystems with ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...