GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ELSEVIER SCIENCE BV  (3)
  • INST MALACOL  (1)
  • INST PATAGONIA  (1)
  • 2020-2023
  • 2010-2014  (5)
  • 1
    Publication Date: 2018-02-05
    Description: Euphausiids constitute a major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Here we introduce a global krill respiration ANN (artificial neural network) model including the effect of latitude (LAT), the day of the year (DoY), and the number of daylight hours (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r2 = 0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. For single Euphausiid species investigated in a large range of DLh and DoY, we also tested the standard respiration rate for seasonality with Multiple Linear Regression (MLR) and General Additive model (GAM). GAM successfully integrated DLh (r2 = 0.563) and DoY (r2 = 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. We could not detect DLh or DoY effects in the North Pacific krill Euphausia pacifica, and our findings for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-16
    Description: Euphausiids constitute a major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Here we introduce a global krill respiration ANN (Artificial Neural Network) model including the effect of latitude (LAT), the day of the year (DoY), and the number of daylight hours (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r2=0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. For single Euphausiid species investigated in a large range of DLh and DoY, we also tested the standard respiration rate for seasonality with Multiple Linear Regression (MLR) and General Additive model (GAM). GAM successfully integrated DLh (r2= 0.563) and DoY (r2= 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. We could not detect DLh or DoY effects in the North Pacific krill Euphausia pacifica, and our findings for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modelling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Sea Research, ELSEVIER SCIENCE BV, 85, pp. 18-28, ISSN: 1385-1101
    Publication Date: 2019-07-16
    Description: The trophic structure of the German Bight soft-bottom benthic community was evaluated for potential changes after cessation of bottom trawling. Species were collected with van-Veen grabs and beam trawls. Trophic position (i.e. nitrogen stable isotope ratios, δ15N) and energy flow (i.e. species metabolism approximated by body mass scaled abundance) of dominant species were compared in trawled areas and an area protected from fisheries for 14 months in order to detect trawling cessation effects by trophic characteristics. At the community level, energy flow was lower in the protected area, but we were unable to detect significant changes in trophic position. At the species level energy flow in the protected area was lower for predating/scavenging species but higher for interface feeders. Species trophic positions of small predators/scavengers were lower and of deposit feeders higher in the protected area. Major reasons for trophic changes after trawling cessation may be the absence of artificial and additional food sources from trawling likely to attract predators and scavengers, and the absence of physical sediment disturbance impacting settlement/survival of less mobile species and causing a gradual shift in food availability and quality. Our results provide evidence that species or community energy flow is a good indicator to detect trawling induced energy-flow alterations in the benthic system, and that in particular species trophic properties are suitable to capture subtle and short-term changes in the benthos following trawling cessation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-16
    Description: The population structure, particularly growth, age, mortality and somatic production of the olivid snail Olivancillaria deshayesiana were investigated. Annual formation of internal shell growth marks was confirmed by the record of stable oxygen isotopes in the shell, which reflects seasonal patterns of water temperature. A von Bertalanffy growth model fitted to 81 size-at- age data pairs, indicating that O. deshayesiana may attain 31 mm SL in about 10 years. The estimated total mortality Z and natural mortality M were 0.651 y-1 and 0.361 y-1, respectively. Fishing mortality F was 0.290 y-1, and the exploitation rate E was 0.445, indicating that this population was not overexploited at the time of the study. However, this situation may well change in the future, since the important prawn and shrimp fisheries (in intensity and scale) in the Mar del Plata area (38°20’S, 57°37’W) may indirectly affect the exploitation status of the studied population
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    INST PATAGONIA
    In:  EPIC3Anales del Instituto de la Patagonia, INST PATAGONIA, 42(2), pp. 65-70, ISSN: 0718-6932
    Publication Date: 2014-12-16
    Description: Diet composition and food sources of the limpets Nacella deaurata and Nacella magellanica were studied in a subantarctic rocky-boulder intertidal system in the Magellan Strait, on the basis of gut contents and stable isotope analyses. Green microalgae (32.5 %), brown algae (22.2 %) and red algae (21.3 %) constituted the main food items in N. deaurata while green microalgae (28.3 %), micro-bivalves (27.4 %) and foraminiferans (20.9 %) were dominant food components in N. magellanica. Relative food items contribution indicated a generalist-type trophic strategy in both species, albeit N. deaurata exhibited a more pronounced herbivory. Stable isotope ratios confirmed this omnivorous / grazer lifestyle. Our results coincide with other studies that report green microalgae to be the major food item for other Nacella species but they also contradict the common view that these limpets are herbivorous animals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...