GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (2)
  • 2020-2023
  • 2010-2014  (2)
Document type
Years
Year
  • 1
    Publication Date: 2019-09-23
    Description: The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk δ18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C–18O bond abundance, denoted by the measured parameter Δ47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of −1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Δ47 and growth temperature. We also find that the slope of a linear regression through all the Δ47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Δ47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Δ47-temperature relationships between calcitic and aragonitic taxa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of 〉230 Pa (〉2300 μatm) and pHNBS values of 〈7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 μatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 μatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 μatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values 〉400 Pa (〉4000 μatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...