GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aquatic sediments  (1)
  • Carbon inventory  (1)
  • 2020-2023
  • 2015-2019  (2)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carbon Balance and Management 12 (2017): 10, doi:10.1186/s13021-017-0077-x.
    Description: Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG)-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm—particularly over continental margins—could be considered as part of national GHG inventories. This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The latter carries potential implications for the management of human activities on coastal environments and for their GHG inventories.
    Description: We acknowledge research support from ETH Zurich and the Swiss National Science Foundation.
    Keywords: Carbon stocks ; Sediments ; Oceans ; Climate change ; Exclusive Economic Zone ; Carbon inventory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, [year]. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 5098–5108, doi:10.1002/2016GL069253.
    Description: Pyrogenic carbon (PyC) is a collective term for carbon-rich residues comprised of a continuum of products arising from biomass burning and fossil-fuel combustion. PyC is ubiquitous in the environment where it can be transported by wind and water before being deposited in aquatic sediments. We compare results from four different methods used to trace PyC that were applied to a high-temporal resolution sedimentary record in order to constrain changes in PyC concentrations and fluxes over the past ~250 years. We find markedly discordant records for different PyC tracers, particularly during the preindustrial age, implying different origins and modes of supply of sedimentary PyC. In addition to providing new insights into the composition of sedimentary combustion products, this study reveals that elucidation of past combustion processes and development of accurate budgets of PyC production and deposition on local to regional scales requires careful consideration of both source characteristics and transport processes.
    Description: UZH; NSF Grant Numbers: OCE-9708478, CHE-0089172
    Description: 2016-11-30
    Keywords: Decoupled pyrogenic carbon records ; Aquatic sediments ; Organic carbon cycling ; Local and regional sources ; Transport pathways
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...