GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (7)
  • 2015-2019  (78)
  • 2000-2004  (3)
Document type
Keywords
Language
Years
Year
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer
    Keywords: Life sciences ; Aquatic ecology ; Nature ; Environment ; Marine sciences ; Freshwater ; Life Sciences ; Oceanography. ; Ecology . ; Life sciences ; Aquatic ecology ; Nature ; Environment ; Marine sciences ; Freshwater ; Meereskunde ; Meeresbiologie ; Meeresökologie ; Aufsatzsammlung ; Meereskunde ; Meeresbiologie ; Meeresökologie
    Description / Table of Contents: Prolog -- 1 Die physikalische Umwelt „Meer“ -- 2 Der marine Kohlenstoffkreislauf -- 3 Das Pelagial -- 4 Eine virtuelle Reise durch den Atlantik – Energieflüsse, Nahrungswege und Anpassungspfade -- 5 Das Leben im Eispalast: Flora und Fauna des arktischen Meereises -- 6. Wechselwirkungen zwischen Meeresboden und Ozean: Die pelago-benthische Kopplung im Südpolarmeer -- 7 Auftriebsgebiete und El Niño -- 8 Das Bakterioplankton – Riese und Regulator im marinen Stoffumsatz -- 9 Das Phytoplankton im Überblick -- 10 Die wichtigsten Gruppen des Zooplanktons -- 11 Krill und Salpen prägen das antarktische Ökosystem -- 12 Mikroplastikmüll im Meer -- 13 Tintenfische – die Spitzenathleten der Weltmeere,- 14 Meeresschildkröten haben es schwer -- 15 Fischbrut im Nahrungsnetz -- 16 Der arktische Polardorsch und der Antarktische Silberfisch: Erfolgsgeschichten im Eismeer -- 17 Seevögel und ihre Ernährungsweisen als Spiegel der Meeresumwelt -- 18. Schweinswale in der Ostsee – Forschung für den Artenschutz -- 19 Leben am Meeresboden -- 20 Mikroorganismen des Tiefseebodens: Vielfalt, Verteilung, Funktion -- 21 Stabilität, Störungen oder Zufall: Was steuert marine Biodiversität? -- 22 Dunkle Energie: Symbiosen zwischen Tieren und chemosynthetischen Bakterien -- 23 Meeresküsten – ein Überblick -- 24 Leben auf festem Grund – Hartbodengemeinschaften -- 25 Muschelbänke, Seegraswiesen und Watten an Sand- und Schlickküsten -- 26 Mikroalgen in der Grenzschicht zwischen Sediment und Wasser -- 27 Wälder unter Wasser – Großalgengemeinschaften -- 28 Mangroven – Wälder zwischen Land und Meer -- 29 Ökosystem Korallenriff – Schatzkammer der Meere -- 30 Die Ostsee -- 31. Belastungen unserer Meere durch den Menschen -- 32 Wie wirkt der Klimawandel auf das Leben im Meer? -- 33 Ozeanversauerung: Gewinner und Verlierer im Plankton -- 34 CO2-Wirkung auf Meerestiere -- 35 Helgoland, Krill und Klimawandel -- 36 Klimaflüchtlinge, Migranten und Invasoren -- 37 Die Weltfischerei – mit weniger Aufwand fängt man mehr -- 38 Nachhaltiges Fischereimanagement – kann es das geben? -- 39 Zum Beispiel Kabeljau und Hering: Fischerei, Überfischung und Fischereimanagement im Nordatlantik -- 40 Der tote Leviathan – ein Streifzug durch die Geschichte des antarktischen Walfangs -- 41 Sushi und die Algenfarmen -- 42 Kultur von Meerestieren– mehr Eiweißnahrung aus dem Meer -- 43 Über Forschungsschiffe -- 44 Der Hausgarten in der Framstraße: Von der Momentaufnahme zur Langzeituntersuchung -- 45 Neue Methoden der Artbestimmung -- 46 Zeitmaschine DNA – die verschlüsselte Evolutionsgeschichte im Erbgut -- 47 Computermodelle als Werkzeuge der Meeresökologen -- 48 Meeresbiologische Forschungsinstitute in Deutschland -- Epilog.
    Type of Medium: Online Resource
    Pages: Online-Ressource (XXII, 573 S. 220 Abb. in Farbe, online resource)
    Edition: 2. Aufl. 2017
    ISBN: 9783662497142
    Series Statement: SpringerLink
    RVK:
    RVK:
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Meereskunde ; Meeresbiologie ; Meeresökologie ; Aufsatzsammlung ; Meereskunde ; Meeresbiologie ; Meeresökologie
    Description / Table of Contents: Die Themenvielfalt reicht von Flora und Fauna des arktischen Meereises über Mikroplastikmüll im Meer bis hin zur Überfischung und die nachhaltige Nutzung des Meeres. Wichtige Werkzeuge der Mikrobiologen wie Forschungsschiffe, Unterwasserroboter, Gensonden und Datenbanken werden in verständlichen Artikeln beschrieben, Exkurse über die Geschichte und Struktur der meeresbiologischen Forschung in Deutschland runden den Titel ab. (2)
    Type of Medium: Book
    Pages: XXII, 573 Seiten , Illustrationen (überwiegend farbig) , 23.5 cm x 15.5 cm
    Edition: 2. Auflage
    ISBN: 3662497131 , 9783662497135
    DDC: 577.7
    RVK:
    RVK:
    Language: German
    Note: Literaturangaben , Enthält 55 Beiträge
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jungblut, Simon; Beermann, Jan; Boos, Karin; Saborowski, Reinhard; Hagen, Wilhelm (2017): Population development of the invasive crab Hemigrapsus sanguineus (De Haan, 1853) and its potential native competitor Carcinus maenas (Linnaeus, 1758) at Helgoland (North Sea) between 2009 and 2014. Aquatic Invasions, 12(1), 85-96, https://doi.org/10.3391/ai.2017.12.1.09
    Publication Date: 2024-07-19
    Description: The Asian shore crab Hemigrapsus sanguineus (De Haan, 1853) has recently established populations in the North Sea and now occurs within the native ranges of the green crab Carcinus maenas (Linnaeus, 1758). To determine potential competitive effects and to assess the progress of the invasion, species-specific population characteristics (numerical abundances, biomasses, and size distributions) of the two species around the island of Helgoland (German Bight, southern North Sea) were compared for surveys conducted in 2009 and 2014. Sampling sites were chosen based on accessibility and differed in their topography and wave exposure, which allowed testing for the influence of these factors on the establishment success of H. sanguineus. The numerical abundance and biomass of H. sanguineus increased markedly and approached those of C. maenas in 2014. At a sheltered site, H. sanguineus even outnumbered C. maenas, whereas the converse was observed at a site exposed to strong winds and waves. Although such contrasting abundance patterns between the native and the introduced shore crab may be the result of direct interference, the dominance of H. sanguineus at the sheltered site may also be explained by enhanced larval settling rates caused by odors of conspecifics. The results suggest that the invasion of H. sanguineus has not yet reached its equilibrium, and population abundances in the North Sea are expected to further increase in the future.
    Type: dataset publication series
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  University of Bremen, Marine Zoology | Supplement to: Bode, Maya; Koppelmann, Rolf; Teuber, Lena; Hagen, Wilhelm; Auel, Holger (2018): Carbon Budgets of Mesozooplankton Copepod Communities in the Eastern Atlantic Ocean-Regional and Vertical Patterns Between 24°N and 21°S. Global Biogeochemical Cycles, 32(5), 840-857, https://doi.org/10.1029/2017GB005807
    Publication Date: 2024-07-19
    Description: The copepods' impact on vertical carbon flux was assessed for stratified depth layers down to 2000 m at six stations along a transect between 24°N and 21°S in the eastern Atlantic Ocean in October/November 2012. Total copepod community consumption ranged from 202-604 mg C m⁻² day⁻¹, with highest ingestion rates in the tropical North Atlantic. Calanoids consumed 75-90% of the particulate organic carbon (POC) ingested by copepods, although the relative contribution of cyclopoids (mostly Oncaeidae) increased with depth. Net ingestion (=consumption - fecal pellet egestion) of POC varied from 106-379 mg C m⁻² day⁻¹ for calanoids and 37-51 mg C m⁻² day⁻¹ for cyclopoids, corresponding to 16-58% and 5-9%, respectively, of primary production (PP). In total, 9-33% and 2-5% of PP were respired as inorganic carbon by calanoids and cyclopoids, respectively. Copepod ingestion was highly variable between stations and depth layers, especially in the epi- and upper mesopelagic zone. Diel vertical migrants such as Pleuromamma enhanced the vertical flux to deeper layers, particularly in the region influenced by the Benguela Current. The impact of copepod communities on POC flux decreased below 1000 m and POC resources reaching the bathypelagic zone were far from being fully exploited by copepods. As key components, copepods are important mediators of carbon fluxes in the ocean. Their biomass, community composition and interactions strongly affect the magnitude of organic carbon recycled or exported to deeper layers. High variability, even at smaller vertical scales, emphasizes the complex dynamics of the biological carbon pump.
    Type: dataset publication series
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schukat, Anna; Bode, Maya; Auel, Holger; Carballo, Rodrigo; Martin, Bettina; Koppelmann, Rolf; Hagen, Wilhelm (2013): Pelagic decapods in the northern Benguela upwelling system: Distribution, ecophysiology and contribution to active carbon flux. Deep Sea Research Part I: Oceanographic Research Papers, 75, 146-156, https://doi.org/10.1016/j.dsr.2013.02.003
    Publication Date: 2024-07-19
    Description: Decapods were sampled with a 1 m**2 MOCNESS (mainly upper 1000 m) in the northern Benguela Current during three cruises in December 2009, September/October 2010 and February 2011. Although pelagic decapods are abundant members of the micronekton community, information about their ecophysiology is very limited. Species-specific regional distribution limits were detected for various decapod species (e.g. Plesionika carinata, Sergestes arcticus, Pasiphaea semispinosa). Significant diel vertical migration patterns were determined for three caridean and three penaeiodean species. Biomass was variable and ranged from 23 to 2770 mg dry mass m**-2 with highest values for P. semispinosa. Fatty acid and stable isotope analyses revealed that the examined decapod species are omnivorous tocarnivorous except for the herbivorous to omnivorous species P. carinata. Calanid copepods such as Calanoides carinatus were identified as an important prey item especially for caridean species. Community consumption rates of pelagic decapods derived from respiration rates ranged from 7 mg C m**-2 d**-1 (231S) to 420 mg C m**-2 d**-1 (191S, 171S). A potential active respiratory carbon flux was calculated for migrating pelagic decapods with 4.4 mg C m**- d**-1 for the upper 200 m and with 2.6 mg C m**-2 d**-1 from the base of the euphotic zone to a depth of 600 m. Overall, pelagic decapods apparently play a more prominent role in the northern Benguela Current ecosystem than previously assumed and may exert a substantial predation impact on calanid copepods (up to 13% d**-1 of standing stock).
    Keywords: GENUS; Geochemistry and ecology of the Namibian upwelling system
    Type: dataset publication series
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bode, Maya; Hagen, Wilhelm; Schukat, Anna; Teuber, Lena; Fonseca-Batista, Debany; Dehairs, Frank; Auel, Holger (2015): Feeding strategies of tropical and subtropical calanoid copepods throughout the eastern Atlantic Ocean – Latitudinal and bathymetric aspects. Progress in Oceanography, 138, 268-282, https://doi.org/10.1016/j.pocean.2015.10.002
    Publication Date: 2024-07-19
    Description: The majority of global ocean production and total export production is attributed to oligotrophic oceanic regions due to their vast regional expanse. However, energy transfers, food-web structures and trophic relationships in these areas remain largely unknown. Regional and vertical inter- and intra-specific differences in trophic interactions and dietary preferences of calanoid copepods were investigated in four different regions in the open eastern Atlantic Ocean (38°N to 21°S) in October/November 2012 using a combination of fatty acid (FA) and stable isotope (SI) analyses. Mean carnivory indices (CI) based on FA trophic markers generally agreed with trophic positions (TP) derived from d15N analysis. Most copepods were classified as omnivorous (CI ~0.5, TP 1.8 to ~2.5) or carnivorous (CI 〉=0.7, TP 〉=2.9). Herbivorous copepods showed typical CIs of 〈=0.3. Geographical differences in d15N values of epi- (200-0 m) to mesopelagic (1000-200 m) copepods reflected corresponding spatial differences in baseline d15N of particulate organic matter from the upper 100 m. In contrast, species restricted to lower meso- and bathypelagic (2000-1000 m) layers did not show this regional trend. FA compositions were species-specific without distinct intra-specific vertical or spatial variations. Differences were only observed in the southernmost region influenced by the highly productive Benguela Current. Apparently, food availability and dietary composition were widely homogeneous throughout the oligotrophic oceanic regions of the tropical and subtropical Atlantic. Four major species clusters were identified by principal component analysis based on FA compositions. Vertically migrating species clustered with epi- to mesopelagic, non-migrating species, of which only Neocalanus gracilis was moderately enriched in lipids with 16% of dry mass (DM) and stored wax esters (WE) with 37% of total lipid (TL). All other species of this cluster had low lipid contents (〈 10% DM) without WE. Of these, the tropical epipelagic Undinula vulgaris showed highest portions of bacterial markers. Rhincalanus cornutus, R. nasutus and Calanoides carinatus formed three separate clusters with species-specific lipid profiles, high lipid contents (〉=41% DM), mainly accumulated as WE (〉=79% TL). C. carinatus and R. nasutus were primarily herbivorous with almost no bacterial input. Despite deviating feeding strategies, R. nasutus clustered with deep-dwelling, carnivorous species, which had high amounts of lipids (〉=37% DM) and WE (〉=54% TL). Tropical and subtropical calanoid copepods exhibited a wide variety of life strategies, characterized by specialized feeding. This allows them, together with vertical habitat partitioning, to maintain high abundance and diversity in tropical oligotrophic open oceans, where they play an essential role in the energy flux and carbon cycling.
    Type: dataset publication series
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nachtsheim, Dominik A; Jerosch, Kerstin; Hagen, Wilhelm; Plötz, Joachim; Bornemann, Horst (2016): Habitat modelling of crabeater seals (Lobodon carcinophaga) in the Weddell Sea using the multivariate approach Maxent. Polar Biology, 40(5), 961-976, https://doi.org/10.1007/s00300-016-2020-0
    Publication Date: 2024-07-19
    Description: The crabeater seal (Lobodon carcinophaga) is the most abundant Antarctic seal and inhabits the circumpolar pack ice zone of the Southern Ocean. Until now, information on important environmental factors affecting its distribution as well as on foraging behaviour is limited. In austral summer 1998, 12 crabeater seals of both sexes and different age classes were equipped with satellitelinked dive recorders at Drescher Inlet (72.85°S, 19.26°E), eastern Weddell Sea. To identify suitable habitat conditions within the Weddell Sea, a maximum entropy (Maxent) modelling approach was implemented. The model revealed that the eastern and southern Weddell Sea is especially suitable for crabeater seals. Distance to the continental shelf break and sea ice concentration were the two most important parameters in modelling species distribution throughout the study period. Model predictions demonstrated that crabeater seals showed a dynamic response to their seasonally changing environment emphasized by the favoured sea ice conditions. Crabeater seals utilized ice-free waters substantially, which is potentially explained by the comparatively low sea ice cover of the Weddell Sea during summer 1998. Diving behaviour was characterized by short (〉90 % = 0-4 min) and shallow (〉90 % = 0-51 m) dives. This pattern reflects the typical summer and autumn foraging behaviour of crabeater seals. Both the distribution and foraging behaviour corresponded well with the life history of the Antarctic krill (Euphausia superba), the preferred prey of crabeater seals. In general, predicted suitable habitat conditions were congruent with probable habitats of krill, which emphasizes the strong dependence on their primary prey.
    Keywords: Marine Mammal Tracking; MMT
    Type: dataset publication series
    Format: application/zip, 55 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nachtsheim, Dominik A; Ryan, Svenja; Schröder, Michael; Jensen, Laura; Oosthuizen, W Christiaan; Bester, Marthán Nieuwoudt; Hagen, Wilhelm; Bornemann, Horst (2019): Foraging behaviour of Weddell seals (Leptonychotes weddellii) in connection to oceanographic conditions in the southern Weddell Sea. Progress in Oceanography, 173, 165-179, https://doi.org/10.1016/j.pocean.2019.02.013
    Publication Date: 2024-07-19
    Description: The region of the Filchner Outflow System (FOS) in the southeastern Weddell Sea is characterized by intensive and complex interactions of different water masses. Dense Ice Shelf Water (ISW) emerging from beneath the ice shelf cavities on the continental shelf, meets Modified Warm Deep Water (MWDW) originating from the Antarctic Circumpolar Current at the sill of the Filchner Trough. These hydrographic features convert the FOS into an oceanographic key region, which may also show enhanced biological productivity and corresponding aggregations of marine top predators. In this context, six adult Weddell seals (Leptonychotes weddellii) were instrumented with CTD-combined satellite relay data loggers in austral summer 2014. By means of these long-term data loggers we aimed at investigating the influence of environmental conditions on the seals' foraging behaviour throughout seasons, focussing on the local oceanographic features. Weddell seals performed pelagic and demersal dives, mainly on the continental shelf, where they presumably exploited the abundant bentho-pelagic fish fauna. Diurnal and seasonal variations in light availability affected foraging activities. MWDW was associated with increased foraging effort. However, we observed differences in movements and habitat use between two different groups of Weddell seals. Seals tagged in the pack ice of the FOS focussed their foraging activities to the western and, partly, eastern flank of the Filchner Trough, which coincides with inflow pathways of MWDW. In contrast, Weddell seals tagged on the coastal fast ice exhibited typical central-place foraging and utilized resources close to their colony. High foraging effort in MWDW and high utilization of areas associated with an inflow of MWDW raise questions on the underlying biological features. This emphasizes the importance of further interdisciplinary ecological investigations in the near future, as the FOS may soon be impacted by predicted climatic changes.
    Keywords: Marine Mammal Tracking; MMT
    Type: dataset publication series
    Format: application/zip, 24 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-07-20
    Keywords: ARK-VII/2; AWI_BioOce; Biological Oceanography @ AWI; Chlorophyll a; Date/Time of event; DEPTH, water; Elevation of event; Event label; Fluorometry; Greenland Sea; Latitude of event; Longitude of event; MULT; Multiple investigations; Polarstern; PS17; PS17/098; PS17/099; PS17/100; PS17/102; PS17/103; PS17/104; PS17/105; PS17/106; PS17/107; PS17/108; PS17/109; PS17/110; PS17/111; PS17/112; PS17/113; PS17/114; PS17/115; PS17/116; PS17/117; PS17/118; PS17/119; PS17/120; PS17/121; PS17/122; PS17/123; PS17/124; PS17/125; PS17/126; PS17/127; PS17/128; PS17/129; PS17/130; PS17/131; PS17/132; PS17/134; PS17/135; PS17/136; PS17/137; PS17/138; PS17/139; PS17/140; PS17/141; PS17/142; PS17/143; PS17/144; PS17/145; PS17/146; PS17/147; PS17/148; PS17/149; PS17/151; PS17/152; PS17/153; PS17/161; PS17/162; PS17/163; PS17/164; PS17/165; PS17/166; PS17/167; PS17/168; PS17/169; PS17/170; PS17/171; PS17/172; PS17/173; PS17/174; PS17/175; PS17/176; PS17/177; PS17/178; PS17/179; PS17/180; PS17/181; PS17/182; PS17/183; PS17/184; PS17/185; PS17/186; PS17/187; PS17/188; PS17/189; PS17/190; PS17/191; PS17/192; PS17/193; PS17/194; PS17/195; PS17/196; PS17/197; PS17/198; PS17/199; PS17/200; PS17/201; PS17/202; PS17/203; PS17/204; PS17/205; PS17/206; PS17/207; PS17/208; PS17/209; PS17/210; PS17/211; PS17/212; PS17/213; PS17/214; PS17/215; PS17/216; PS17/217; PS17/218; PS17/219
    Type: dataset
    Format: text/tab-separated-values, 1303 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-07-19
    Keywords: Amphipoda; ANT-III/3; Appendicularia; Cephalopoda, juvenile; Chaetognatha; Cnidaria; Comment; Counting; Cyllopus spp.; DATE/TIME; Decapoda; Depth, bottom/max; Depth, top/min; DEPTH, water; Echinospira, larvae; ELEVATION; Euphausia crystallorophias; Euphausia crystallorophias, calyptopis; Euphausia crystallorophias, furcilia; Euphausia crystallorophias, postlarvae and adult; Euphausia suberba, calyptopis; Euphausia suberba, postlarvae and adult; Euphausia superba; Event label; Fraction; Gammaridea; Hyperiella spp.; Hyperiidea; LATITUDE; LONGITUDE; MULT; Multiple investigations; Ostracoda; Pisces, larvae; Polarstern; Polychaeta; Primno spp.; PS06/252; PS06/253; PS06/254; PS06/255; PS06/256; PS06/257; PS06/258; PS06/259; PS06/260; PS06/261; PS06/262; PS06/263; PS06/264; PS06/265; PS06/266; PS06/267; PS06/268; PS06/269; PS06/270; PS06/271; PS06/275; PS06/276; PS06/284; PS06/290; PS06/292; PS06/294; PS06/296; PS06/298; PS06/299; PS06/300; PS06/302; PS06/306; PS06/307; PS06/309; PS06/314; PS06/315; PS06/317; PS06/318; PS06/319; PS06/320; PS06/322; PS06/323; PS06/324; PS06/326; PS06/327; PS06/328; PS06/336; PS06/337; PS06/339; PS06/340; PS06/341; PS06/342; PS06/343; PS06/345; PS06/346; PS06/349; PS06/353; PS06/354; PS06/355; PS06/357; PS06/358; PS06 SIBEX; Pteropoda; Siphonophorae; Thaliacea; Thysanoessa spp.; Thysanoessa spp., calyptopis; Thysanoessa spp., furcilia; Thysanoessa spp., postlarvae and adult; Volume; Weddell Sea; Zooplankton, displacement volume
    Type: dataset
    Format: text/tab-separated-values, 2033 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...