GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (19)
Document type
Language
Years
Year
  • 1
    Publication Date: 2020-12-14
    Description: Although the majority of coastal sediments consist of sandy material, in some areas marine ingression caused the submergence of terrestrial carbon‐rich peat soils. This affects the coastal carbon balance, as peat represents a potential carbon source. We performed a column experiment to better understand the coupled flow and biogeochemical processes governing carbon transformations in submerged peat under coastal fresh groundwater (GW) discharge and brackish water intrusion. The columns contained naturally layered sediments with and without peat (organic carbon content in peat 39 ± 14 wt%), alternately supplied with oxygen‐rich brackish water from above and oxygen‐poor, low‐saline GW from below. The low‐saline GW discharge through the peat significantly increased the release and ascent of dissolved organic carbon (DOC) from the peat (δ13CDOC − 26.9‰ to − 27.7‰), which was accompanied by the production of dissolved inorganic carbon (DIC) and emission of carbon dioxide (CO2), implying DOC mineralization. Oxygen respiration, sulfate (urn:x-wiley:00243590:media:lno11438:lno11438-math-0001) reduction, and methane (CH4) formation were differently pronounced in the sediments and were accompanied with higher microbial abundances in peat compared to sand with urn:x-wiley:00243590:media:lno11438:lno11438-math-0002‐reducing bacteria clearly dominating methanogens. With decreasing salinity and urn:x-wiley:00243590:media:lno11438:lno11438-math-0003 concentrations, CH4 emission rates increased from 16.5 to 77.3 μmol m−2 d−1 during a 14‐day, low‐saline GW discharge phase. In contrast, oxygenated brackish water intrusion resulted in lower DOC and DIC pore water concentrations and significantly lower CH4 and CO2 emissions. Our study illustrates the strong dependence of carbon cycling in shallow coastal areas with submerged peat deposits on the flow and mixing dynamics within the subterranean estuary.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-14
    Description: Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17‐m‐long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ~70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n‐alkane concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted 1‐year‐long incubations (4°C, dark) and measured anaerobic carbon dioxide (CO2) and methane (CH4) production. The sediments from both cores contained little TOC (0.7 ± 0.4 wt%), but DOC values were relatively high, with the highest values in the frozen Yedoma lake sediments (1620 mg L−1). Cumulative greenhouse gas (GHG) production after 1 year was highest in the Yedoma lake sediments (226 ± 212 µg CO2‐C g−1 dw, 28 ± 36 µg CH4‐C g−1 dw) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75 ± 76 µg CO2‐C g−1 dw, 19 ± 29 µg CH4‐C g−1 dw). The highest CO2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH4 production in the non‐frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non‐frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. Our results suggest that GHG production from TOC‐poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice‐rich permafrost deposits vulnerable to thermokarst formation.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-14
    Description: Herbivory by barnacle geese (Branta leucopsis) alters the vegetation cover and reduces ecosystem productivity in high-Arctic peatlands, limiting the carbon sink strength of these ecosystems. Here we investigate how herbivory-induced vegetation changes affect the activities of peat soil microbiota using metagenomics, metatranscriptomics and targeted metabolomics in a comparison of fenced exclosures and nearby grazed sites. Our results show that a different vegetation with a high proportion of vascular plants developed due to reduced herbivory, resulting in a larger and more diverse input of polysaccharides to the soil at exclosed study sites. This coincided with higher sugar and amino acid concentrations in the soil at this site as well as the establishment of a more abundant and active microbiota, including saprotrophic fungi with broad substrate ranges, like Helotiales (Ascomycota) and Agaricales (Basidiomycota). A detailed description of fungal transcriptional profiles revealed higher gene expression for cellulose, hemicellulose, pectin, lignin and chitin degradation at herbivory-exclosed sites. Furthermore, we observed an increase in the number of genes and transcripts for predatory eukaryotes such as Entomobryomorpha (Arthropoda). We conclude that in the absence of herbivory, the development of a vascular vegetation alters the soil polysaccharide composition and supports larger and more active populations of fungi and predatory eukaryotes.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-22
    Description: Temperature is an important factor governing microbe-mediated carbon feedback from permafrost soils. The link between taxonomic and functional microbial responses to temperature change remains elusive due to the lack of studies assessing both aspects of microbial ecology. Our previous study reported microbial metabolic and trophic shifts in response to short-term temperature increases in Arctic peat soil, and linked these shifts to higher CH4 and CO2 production rates (Tveit et al., 2015). Here, we studied the taxonomic composition and functional potential of samples from the same experiment. We see that along a high-resolution temperature gradient (1 – 30 °C), microbial communities change discretely, but not continuously or stochastically, in response to rising temperatures. The taxonomic variability may thus in part reflect the varied temperature responses of individual taxa and the competition between these taxa for resources. These taxonomic responses contrast the stable functional potential (metagenomics-based) across all temperatures or the previously observed metabolic or trophic shifts at key temperatures. Furthermore, with rising temperatures we observed a progressive decrease in species diversity (Shannon Index) and increased dispersion of greenhouse gas (GHG) production rates. We conclude that the taxonomic variation is decoupled from both the functional potential of the community and the previously observed temperature-dependent changes in microbial function. However, the reduced diversity at higher temperatures might help explain the higher variability in GHG production at higher temperatures.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-22
    Description: Plasmids have the potential to transfer genetic traits within bacterial communities and thereby serve as a crucial tool for the rapid adaptation of bacteria in response to changing environmental conditions. Our knowledge of the environmental pool of plasmids (the metaplasmidome) and encoded functions is still limited due to a lack of sufficient extraction methods and tools for identifying and assembling plasmids from metagenomic datasets. Here, we present the first insights into the functional potential of the metaplasmidome of permafrost-affected active-layer soil—an environment with a relatively low biomass and seasonal freeze–thaw cycles that is strongly affected by global warming. The obtained results were compared with plasmidderived sequences extracted from polar metagenomes. Metaplasmidomes from the Siberian active layer were enriched via cultivation, which resulted in a longer contig length as compared with plasmids that had been directly retrieved from the metagenomes of polar environments. The predicted hosts of plasmids belonged to Moraxellaceae, Pseudomonadaceae, Enterobacteriaceae, Pectobacteriaceae, Burkholderiaceae, and Firmicutes. Analysis of their genetic content revealed the presence of stress-response genes, including antibiotic and metal resistance determinants, as well as genes encoding protectants against the cold.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-22
    Description: Three strains of methanotrophic bacteria (EbAT, EbBT and Eb1) were isolated from the River Elbe, Germany. These Gram-negative, rod-shaped or coccoid cells contain intracytoplasmic membranes perpendicular to the cell surface. Colonies and liquid cultures appeared bright-pink. The major cellular fatty acids were 12:0 and 14:0, in addition in Eb1 the FA 16:1ω5t was also dominant. Methane and methanol were utilized as sole carbon sources by EbBT and Eb1, while EbAT could not use methanol. All strains oxidize methane using the particulate methane monooxygenase. Only EbBT contains an additional soluble methane monooxygenase. The strains grew optimally at 15 – 25°C and at pH 6 and 8. Based on 16S rRNA gene analysis recovered from the full genome, the phylogenetic position of EbAT is robustly outside any species clade with its closest relatives being Methylomonas sp. MK1 (98.24 %) and Methylomonas sp. 11b (98.11 %). Its closest type strain is Methylomonas methanica NCIMB11130 (97.91%). The 16S rRNA genes of EbBT are highly similar to Methylomonas methanica strains with Methylomonas methanica R-45371 as the closest relative (99.87 % sequence identity). However, average nucleotide identity (ANI) and digital DNA-DNA-hybridization (dDDH) values reveal it as distinct species. The DNA G+C contents were 51.07 mol% and 51.5 mol% for EbAT and EbBT, and 50.7 mol% for Eb1, respectively. Strains EbAT and EbBT are representing two novel species within the genus Methylomonas. For strain EbAT we propose the name Methylomonas albis sp. nov (LMG 29958, JCM 32282) and for EbBT, we propose the name Methylomonas fluvii sp. nov (LMG 29959, JCM 32283). Eco-physiological descriptions for both strains are provided. Strain Eb1 (LMG 30323, JCM 32281) is a member of the species Methylovulum psychrotolerans. This genus is so far only represented by two isolates but Eb1 is the first isolate from a temperate environment; so, an emended description of the species is given.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-27
    Description: Greenhouse gas emissions from physical permafrost thaw disturbance and subsidence, including the formation and expansion of thermokarst (thaw) lakes, may double the magnitude of the permafrost carbon feedback this century. These processes are not accounted for in current global climate models. Thermokarst lakes, in particular, have been shown to be hotspots for emissions of methane (CH4), a potent greenhouse gas with 32 times more global warming potential than carbon dioxide (CO2) over a 100-year timescale. Here, we synthesize several studies examining CH4 dynamics in a representative first-generation thermokarst lake (Vault Lake, informal name) to show that CH4 production and oxidation potentials vary with depth in thawed sediments beneath the lake. This variation leads to depth-dependent differences in both in situ dissolved CO2:CH4 ratios and net CH4 production responses to additional warming. Comparing CH4 production, oxidation, and flux values from studies at Vault Lake suggests up to 99% of produced CH4 is oxidized and/or periodically entrapped before entering the atmosphere. We summarize these findings in the context of CH4 literature from thermokarst lakes and identify future research directions for incorporating thermokarst lake CH4 dynamics into estimates of the permafrost carbon feedback.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-10
    Description: The concept of a ‘plastisphere microbial community’ arose from research on aquatic plastic debris, while the effect of plastics on microbial communities in soils remains poorly understood. Therefore, we examined the inhabiting microbial communities of two plastic debris ecosystems with regard to their diversity and composition relative to plastic-free soils from the same area using 16S rRNA amplicon sequencing. Furthermore, we studied the plastic-colonizing potential of bacteria originating from both study sites as a measure of surface adhesion to UV-weathered polyethylene (PE) using high-magnification field emission scanning electron microscopy (FESEM). The high plastic content of the soils was associated with a reduced alpha diversity and a significantly different structure of the microbial communities. The presence of plastic debris in soils did not specifically enrich bacteria known to degrade plastic, as suggested by earlier studies, but rather shifted the microbial community towards highly abundant autotrophic bacteria potentially tolerant to hydrophobic environments and known to be important for biocrust formation. The bacterial inoculates from both sites formed dense biofilms on the surface and in micrometer-scale surface cracks of the UV-weathered PE chips after 100 days of in vitro incubation with visible threadlike EPS structures and cross-connections enabling surface adhesion. High-resolution FESEM imaging further indicates that the microbial colonization catalyzed some of the surface degradation of PE. In essence, this study suggests the concept of a ‘terrestrial plastisphere’ as a diverse consortium of microorganisms including autotrophs and other pioneering species paving the way for those members of the consortium that may eventually break down the plastic compounds.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-14
    Description: Methane production in thawing permafrost can be substantial, yet often evolves after long lag phases or is even lacking. A central question is to which extent the production of methane after permafrost thaw is determined by the initial methanogenic community. We quantified the production of methane relative to carbon dioxide (CO2) and enumerated methanogenic (mcrA) gene copies in long-term (2–7 years) anoxic incubations at 4°C using interglacial and glacial permafrost samples of Holocene and Pleistocene including Eemian origin. Changes in archaeal community composition were determined by sequencing of the archaeal 16S rRNA gene. Long-term thaw stimulated methanogenesis where methanogens initially dominated the archaeal community. Deposits of interstadial and interglacial (Eemian) origin, formed under higher temperatures and precipitation, displayed the greatest response to thaw. At the end of the incubations, a substantial shift in methanogenic community composition and a relative increase in hydrogenotrophic methanogens had occurred except for Eemian deposits in which a high abundance of potential acetoclastic methanogens were present. This study shows that only anaerobic CO2 production but not methane production correlates significantly with carbon and nitrogen content and that the methanogenic response to permafrost thaw is mainly constrained by the paleoenvironmental conditions during soil formation.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Trends in Microbiology
    Publication Date: 2020-12-10
    Description: Permafrost covers a quarter of the northern hemisphere land surface and contains twice the amount of carbon that is currently present in the atmosphere. Future climate change is expected to reduce its near-surface cover by over 90% by the end of the 21st century, leading to thermokarst lake formation. Thermokarst lakes are point sources of carbon dioxide and methane which release long-term carbon stocks into the atmosphere, thereby initiating a positive climate feedback potentially contributing up to a 0.39°C rise of surface air temperatures by 2300. This review describes the potential role of thermokarst lakes in a warming world and the microbial mechanisms that underlie their contributions to the global greenhouse gas budget.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...