GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (2)
Document type
Years
Year
  • 1
    Publication Date: 2021-09-02
    Description: A ground-based ultra-wideband radiometer operating at 540, 900, 1380, and 1740 MHz was used to measure microwave thermal emissions from an Arctic sea ice floe as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition. The instrument was deployed on a drifting ice floe near 86°N, 120°E in leg 1 of the expedition (December 2019) and observed second-year ice (potentially with refrozen melt ponds) that experienced new ice growth at its base over a ten-day period. Measured circularly polarized brightness temperatures were compared with the predictions of a radiative transfer (RT) model for a layered medium consisting of ocean, growing new ice, desalinated remnant second-year ice/refrozen melt pond, and snow layers. Characteristics of the sea ice composition used in the model were determined from in-situ measurements. Comparisons of the measured and modeled wideband brightness temperatures showed good agreement consistently over the observation period and for various off-nadir observation angles. The results demonstrate the capabilities of 0.5-2 GHz microwave radiometry for observing sea ice properties and also show the impact of a saline ice layer at the ice bottom on the measured brightness temperature.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AAPG (American Association of Petroleum Geologists)
    In:  AAPG Bulletin, 104 (9). pp. 1945-1969.
    Publication Date: 2021-01-08
    Description: We interpret the sedimentologic evolution of a deep-water channel-levee deposit in Green Canyon Block 955 (deep-water Gulf of Mexico) by analyzing hydrate-bearing pressure cores and nonpressure cores collected during The University of Texas-Gulf of Mexico 2-1 (UT-GOM2-1) Hydrate Pressure Coring Expedition that preserve remarkable sedimentary structures. The levee is composed of alternating beds of sandy silt and clayey silt that range from millimeters to meters in thickness. We interpret that each couplet of sandy silt and clayey silt records a single turbidity current flow in which the upper part of the flow overtops the levee and is deposited along its flank. The sandy silt is coarser, its beds are thicker, and the fraction of sandy silt to clayey silt (net-to-gross) is greater near the base of the levee. We interpret that as the levee grew, the channel depth increased and a smaller fraction of the flow overtopped the levee. An increase in net-to-gross, both at the base and near the top of the cored section, may record an increase in the size of turbidity current flows or a decrease in the relative height of the levee. Based on the limited core recovery, we infer that the lithology of the bounding unit immediately above the hydrate-bearing unit is thinner bedded and has lower net-to-gross than the hydrate reservoir. The bounding unit below the hydrate-bearing interval is similarly thinner bedded, yet contains high saturations of hydrate. This study illuminates the lithologic architecture of leveed-channel turbidite reservoirs at core scale and provides insight into how lithology controls hydrate distribution and concentration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...