GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (5)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2020-11-15
    Description: Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (〉 40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-20
    Description: Methane emissions from natural wetlands tend to increase with temperature and therefore may lead to a positive feedback under future climate change. However, their temperature response includes confounding factors and appears to differ on different time scales. Observed methane emissions depend strongly on temperature on a seasonal basis, but if the annual mean emissions are compared between sites, there is only a small temperature effect. We hypothesize that microbial dynamics are a major driver of the seasonal cycle and that they can explain this apparent discrepancy. We introduce a relatively simple model of methanogenic growth and dormancy into a wetland methane scheme that is used in an Earth system model. We show that this addition is sufficient to reproduce the observed seasonal dynamics of methane emissions in fully saturated wetland sites, at the same time as reproducing the annual mean emissions. We find that a more complex scheme used in recent Earth system models does not add predictive power. The sites used span a range of climatic conditions, with the majority in high latitudes. The difference in apparent temperature sensitivity seasonally versus spatially cannot be recreated by the non‐microbial schemes tested. We therefore conclude that microbial dynamics are a strong candidate to be driving the seasonal cycle of wetland methane emissions. We quantify longer‐term temperature sensitivity using this scheme and show that it gives approximately a 12% increase in emissions per degree of warming globally. This is in addition to any hydrological changes, which could also impact future methane emissions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-29
    Description: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-23
    Description: Arctic rivers deliver ≈11% of global river discharge into the Arctic Ocean, while this ocean represents only ≈1% of the global ocean volume. Ongoing climate warming across the Arctic, and specifically Siberia, has led to regional-scale changes in precipitation patterns, greater rates of permafrost thaw and active layer deepening, as well as enhanced riverbank and coastal erosion. Combined, these climatic and cryospheric perturbations have already resulted in increased freshwater discharge and changes to constituent loads (e.g. dissolved organic carbon - OC) supplied from land to the Arctic Ocean. To date, the majority of studies examining terrestrial organic matter (OM) delivery to the Arctic Ocean have focused almost entirely on freshwater (riverine) or fully-marine environments and been conducted during late summer seasons – often due to logistical constraints. Despite this, an improved understanding of how OC is transformed, mineralised and released during transit through the highly reactive nearshore estuarine environment is critical for examining the fate and influence of terrestrial OM on the Arctic Ocean. Capturing seasonality over the open water period is also necessary to identify current OM fluxes to the ocean vs the atmosphere, and aid in constraining how future changes may modify them. Here we focus upon carbon dioxide (CO2) and methane (CH4) measurements collected during six repeated transects of the Kolyma River and nearshore zone (covering ~120 km) from 2019. Transects spanned almost the entirety of the riverine open water season (June to September). We use these results, in parallel with gas concentrations derived from prior studies, to develop and validate a simple box-model of gas emissions from the nearshore zone. Observations and model‐derived output data reveal that more than 50% of the cumulative gross delivery of CH4 and CO2 to the coastal ocean occurred during the freshet period with dissolved CH4 concentrations in surface water reaching 660 Nanomole per liter [nmol/l]. These results demonstrate the relevance of seasonal dynamics and its spatial variability which are needed in order to estimate greenhouse gas fluxes on an annual basis. More accurate understanding of land-ocean carbon fluxes in the Arctic is therefore crucial to mitigate the effects of climate change and to support the decisions of policy makers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...