GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (2)
  • PUBLIC LIBRARY SCIENCE  (1)
  • WALTER DE GRUYTER & CO  (1)
  • 2020-2022  (2)
Publikationsart
  • Artikel  (2)
Datenquelle
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    PUBLIC LIBRARY SCIENCE
    In:  EPIC3PLoS ONE, PUBLIC LIBRARY SCIENCE, 15(6), pp. e0235388, ISSN: 1932-6203
    Publikationsdatum: 2020-07-02
    Beschreibung: The plasticity of different kelp populations to heat stress has seldom been investigated excluding environmental effects due to thermal histories, by raising a generation under common garden conditions. Comparisons of populations in the absence of environmental effects allow unbiased quantification of the meta-population adaptive potential and resolution of population-specific differentiation. Following this approach, we tested the hypothesis that genetically distinct arctic and temperate kelp exhibit different thermal phenotypes, by comparing the capacity of their microscopic life stages to recover from elevated temperatures. Gametophytes of Laminaria digitata (Arctic and North Sea) grown at 15˚C for 3 years were subjected to common garden conditions with static or dynamic (i.e., gradual) thermal treatments ranging between 15 and 25˚C and also to darkness. Gametophyte growth and survival during thermal stress conditions, and subsequent sporophyte recruitment at two recovery temperatures (5 and 15˚C), were investigated. Population-specific responses were apparent; North Sea gametophytes exhibited higher growth rates and greater sporophyte recruitment than those from the Arctic when recovering from high temperatures, revealing differential thermal adaptation. All gametophytes performed poorly after recovery from a static 8-day exposure at 22.5˚C compared to the response under a dynamic thermal treatment with a peak temperature of 25˚C, demonstrating the importance of gradual warming and/or acclimation time in modifying thermal limits. Recovery temperature markedly affected the capacity of gametophytes to reproduce following high temperatures, regardless of the population. Recovery at 5˚C resulted in higher sporophyte production following a 15˚C and 20˚C static exposure, whereas recovery at 15˚C was better for gametophyte exposures to static 22.5˚C or dynamic heat stress to 25˚C. The subtle performance differences between populations originating from sites with contrasting local in situ temperatures support our hypothesis that their thermal plasticity has diverged over evolutionary time scales.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    WALTER DE GRUYTER & CO
    In:  EPIC3Botanica Marina, WALTER DE GRUYTER & CO, 64(3), pp. 163-175, ISSN: 0006-8055
    Publikationsdatum: 2021-12-14
    Beschreibung: Two morphologically similar digitate kelp species, Laminaria digitata and Hedophyllum nigripes, co-occur along a shallow sublittoral depth gradient in the Arctic but, in contrast to L. digitata, very few ecophysiological data exist for H. nigripes. We investigated growth, survival, photosynthetic characteristics and carbon:nitrogen ratios of juvenile sporophytes, and recruitment and survival of gametophytes in genetically verified Arctic isolates of both species along temperature gradients (0–25 °C) over 14 days. Laminaria digitata gametophytes survived 23–24 °C, while sporophytes survived 21–22 °C. Hedophyllum nigripes had lower temperature affinities. Gametophytes survived 19–21 °C, while sporophytes survived 18 °C. Male gametophytes were more heat-tolerant than female gametophytes in both species. The pronounced cold adaption of H. nigripes compared to L. digitata also became apparent in different sporophyte growth optima (L. digitata: 15 °C; H. nigripes: 10 °C) and gametogenesis optima (L. digitata: 5–15 °C; H. nigripes: 0–10 °C).Higher carbon:nitrogen ratios in H. nigripes suggest an adaptation to nutrient poor Arctic conditions. The overall temperature performance of H. nigripes possibly restricts the species to Arctic–Sub-Arctic regions, while Arctic L. digitatabehaved similarly to cold-temperate populations. Our data suggest that a future increase in seawater temperatures may hamper the success of H. nigripes and favour L. digitata in Arctic environments.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...