GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PUBLIC LIBRARY SCIENCE  (1)
  • Springer Nature Switzerland AG  (1)
  • 2020-2022  (2)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PUBLIC LIBRARY SCIENCE
    In:  EPIC3PLoS ONE, PUBLIC LIBRARY SCIENCE, 15(6), pp. e0235388, ISSN: 1932-6203
    Publication Date: 2020-07-02
    Description: The plasticity of different kelp populations to heat stress has seldom been investigated excluding environmental effects due to thermal histories, by raising a generation under common garden conditions. Comparisons of populations in the absence of environmental effects allow unbiased quantification of the meta-population adaptive potential and resolution of population-specific differentiation. Following this approach, we tested the hypothesis that genetically distinct arctic and temperate kelp exhibit different thermal phenotypes, by comparing the capacity of their microscopic life stages to recover from elevated temperatures. Gametophytes of Laminaria digitata (Arctic and North Sea) grown at 15˚C for 3 years were subjected to common garden conditions with static or dynamic (i.e., gradual) thermal treatments ranging between 15 and 25˚C and also to darkness. Gametophyte growth and survival during thermal stress conditions, and subsequent sporophyte recruitment at two recovery temperatures (5 and 15˚C), were investigated. Population-specific responses were apparent; North Sea gametophytes exhibited higher growth rates and greater sporophyte recruitment than those from the Arctic when recovering from high temperatures, revealing differential thermal adaptation. All gametophytes performed poorly after recovery from a static 8-day exposure at 22.5˚C compared to the response under a dynamic thermal treatment with a peak temperature of 25˚C, demonstrating the importance of gradual warming and/or acclimation time in modifying thermal limits. Recovery temperature markedly affected the capacity of gametophytes to reproduce following high temperatures, regardless of the population. Recovery at 5˚C resulted in higher sporophyte production following a 15˚C and 20˚C static exposure, whereas recovery at 15˚C was better for gametophyte exposures to static 22.5˚C or dynamic heat stress to 25˚C. The subtle performance differences between populations originating from sites with contrasting local in situ temperatures support our hypothesis that their thermal plasticity has diverged over evolutionary time scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer Nature Switzerland AG
    In:  EPIC3Antarctic Seaweeds, Antarctic Seaweeds. Diversity, Adaptation and Ecosystem Services, Cham, Springer Nature Switzerland AG, 397 p., pp. v-397, ISBN: 978-3-030-39447-9
    Publication Date: 2020-06-09
    Description: The natural environment of Antarctic seaweeds is characterized by changing seasonal light conditions. The ability to adapt to this light regime is one of the most important prerequisites for their ecological success. Thus, the persistence of seaweeds depends on their capacity to maintain a positive carbon balance (CB)for buildup of biomass over the course of the year. A positive CB in Antarctica occurs only during the ice-free period in spring and summer, when photosynthetically active radiation (PAR, 400–700 nm) penetrates deeply into the water column. The accumulated carbon compounds during this period are stored and remobilized to support metabolism for the rest of the year. Over the last decades climate warming has induced a severe glacial retreat in Antarctica and has opened newly ice-free areas. Increased sediment runoff, and reduced light penetration due to melting during the warmer months, may lead to a negative CB with changes in the vertical distribution of seaweeds. Furthermore, warmer winters and springs result in earlier sea-ice melt, causing an abrupt increase in light, compensating the reduction in PAR in summer or increasing the annual light budget. Studies performed in Potter Cove, Isla 25 de Mayo/King George Island, reveal that algae growing in newly ice-free areas did not acclimate to the changing light conditions. Lower or even negative CB values in areas close to the glacier runoff seem to be primarily dependent on the incoming PAR that finally determines the lower distribution limit of seaweeds. The present chapter discusses how carbon balance respond to the changing Antarctic light environment and its potential implications for the fate of benthic algal communities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev , info:eu-repo/semantics/other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...