GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (1)
  • 2000-2004  (6)
  • 1
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Physical detection of antigen-specific CD4 T cells has revealed features of the in vivo immune response that were not appreciated from in vitro studies. In vivo, antigen is initially presented to naive CD4 T cells exclusively by dendritic cells within the T cell areas of secondary lymphoid tissues. Anatomic constraints make it likely that these dendritic cells acquire the antigen at the site where it enters the body. Inflammation enhances in vivo T cell activation by stimulating dendritic cells to migrate to the T cell areas and display stable peptide-MHC complexes and costimulatory ligands. Once stimulated by a dendritic cell, antigen-specific CD4 T cells produce IL-2 but proliferate in an IL-2-independent fashion. Inflammatory signals induce chemokine receptors on activated T cells that direct their migration into the B cell areas to interact with antigen-specific B cells. Most of the activated T cells then die within the lymphoid tissues. However, in the presence of inflammation, a population of memory T cells survives. This population is composed of two functional classes. One recirculates through nonlymphoid tissues and is capable of immediate effector lymphokine production. The other recirculates through lymph nodes and quickly acquires the capacity to produce effector lymphokines if stimulated. Therefore, antigenic stimulation in the presence of inflammation produces an increased number of specific T cells capable of producing effector lymphokines throughout the body.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] ATP synthases are enzymes that can work in two directions to catalyse either the synthesis or breakdown of ATP, and they constitute the smallest rotary motors in biology. The flow of protons propels the rotation of a membrane-spanning complex of identical protein subunits, the number of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature America Inc.
    Nature structural biology 7 (2000), S. 715-718 
    ISSN: 1072-8368
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Progress in the application of the atomic force microscope (AFM) to imaging and manipulating biomolecules is the result of improved instrumentation, sample preparation methods and image acquisition conditions. Biological membranes can be imaged in their native state at a lateral resolution of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-11
    Description: The exceptionally large gold resource at Ladolam (〉1,300 metric tons of gold), Lihir Island, resulted from the transition of an early-stage, low-grade porphyry gold system to a low-sulfidation epithermal gold event. This transition was probably triggered by rapid decompression during the partial slope failure of Luise stratovolcano and accompanied by the ingress of seawater. The original porphyry stage is indicated by remnant hydrothermal breccia clasts of strongly biotite–magnetite altered monzodiorite with disseminated pyrite ± chalcopyrite and poorly developed pyrite ± quartz stockwork veins. The breccias are overprinted by biotite–magnetite alteration and their matrix is strongly mineralized with disseminated auriferous pyrite. The breccias are cut by late-stage epithermal quartz–chalcedony–illite–adularia–pyrite veins and associated illite–adularia alteration that locally contain bonanza gold grades of up to 120 g/t. Isotope data suggest a magmatic source of sulfur in the gold-bearing fluids at Ladolam.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-11
    Description: The Skouries porphyry Cu–Au deposit, containing an indicated reserve of 206 Mt at 0.54% Cu and 0.80 g/t Au, is hosted by at least four hypabyssal monzonite–porphyry phases. In decreasing age, they are: (1) pink monzonite, (2) main monzonite, (3) intra-mineral monzonite, and (4) late-stage porphyry. High-grade ore is directly associated with the main and intra-mineral monzonite phases. All intrusive phases are cut by late-stage monzonite dykes that are barren. The monzonites have porphyritic textures with phenocrysts of plagioclase, alkali feldspar and amphibole as well as apatite and titanite microphenocrysts in a fine-grained feldspar-dominated groundmass. Mineralized samples are affected to varying degrees by potassic alteration, ranging from weak biotite–magnetite disseminations, through cross-cutting veinlets of hydrothermal orthoclase, to zones with pervasive orthoclase flooding. The high halogen contents of the Skouries intrusions are reflected in the high Cl and F concentrations of mica phases (up to 0.19 and 2.48 wt% respectively). The presence of magmatic magnetite in all intrusive phases implies high oxygen fugacities of the parental melts. All four monzonite phases have relatively evolved compositions, as reflected by their high SiO2, low MgO and low mg#, and variable but low contents of mantle-compatible elements such as V, Ni and Co. However, their mg# suggests increasing degrees of fractionation of the parental melts with decreasing age. Their high K2O (up to 5.8 wt%) and K2O/Na2O ratios (〉1), as well as their high Ce/Yb and Th/Yb ratios (〉34 and 〉21 respectively), which are believed to have been unaffected by alteration processes, are typical of alkaline rocks of the shoshonite association. Importantly, the Skouries intrusions are characterized by very high U and Th contents (up to 18.9 ppm and 62 ppm, respectively) that are consistent with accessory thorite and rare allanite in several samples. The high initial 87Sr/86Sr ratios (0.7082) for the Skouries intrusions suggest crustal contamination during emplacement. The use of geochemical discrimination diagrams assigns the rocks to a continental arc setting in accord with the interpretation of previous workers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-12
    Description: Many world-class porphyry copper–gold and epithermal gold deposits worldwide are hosted by volatile-rich and oxidized alkaline rocks. This study investigates potassic igneous rocks from the vicinity of epithermal gold mineralization at Lihir Island, Papua New Guinea. The island consists of five Pliocene–Pleistocene stratovolcanoes, one of which hosts Ladolam, one of the largest epithermal gold deposits discovered to date. Petrographically, the rocks range from porphyritic trachybasalts, trachyandesites and latites to rare phonolites and olivine–clinopyroxene cumulates. In some places, these rocks are cut by monzodiorite stocks. According to Al-in-hornblende barometry, the main crystallization of these rocks occurred close to the surface. Titanium-in-hornblende thermometry as well as olivine–spinel geothermometry and oxygen barometry indicate temperatures of 787–965°C at elevated oxygen fugacities (fO2) of 1.4–4.8 log units above that of the FMQ buffer. Although previous studies have suggested high fO2 of alkaline rocks associated with copper–gold mineralization based on abundant primary magnetite contents, this is the first direct determination of the fO2 of such rocks. High fO2 of parental melts commonly delays the early crystallization of magmatic sulphides; this is important because metals such as Au and Cu preferentially partition into sulphide phases resulting in their depletion in the melt during increasing fractionation. Geochemically, the rocks range from primitive to relatively evolved compositions, as reflected by their SiO2 (45.8–55.0 wt.%) and MgO (1.4–15.3 wt.%) contents and variable concentrations of mantle-compatible elements (130–328 ppm V, 1–186 ppm Ni). Their high K2O content (up to 4.7 wt.%), high average K2O/Na2O ratios (0.8) and high average Ce/Yb ratios (14) are typical of high-K igneous rocks transitional to shoshonites. Although these rocks formed by decompression melting related to back-arc rifting in the Manus Basin, the high LILE, low LREE and very low HFSE concentrations are typical of potassic igneous rocks from oceanic (island) arc settings. The reason for this remarkable composition is the partial melting of subduction-modified lithospheric mantle, which developed in a stalled subduction zone. Mica phenocrysts in the rocks reveal unusually high halogen concentrations. Magmatic phlogopites contain high F (up to 5.6 wt.%) and elevated Cl contents (〈0.08 wt.%). Hydrothermal biotites from rocks that display potassic alteration have low F (〈0.08 wt.%), but very high Cl concentrations (up to 0.15 wt.%). It is suggested that chloride complexing largely controlled the abundances of Au and Cu in the aqueous fluids responsible for the hydrothermal gold mineralization at Ladolam.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-28
    Description: Changes in land management and climate alter vegetation dynamics, but the determinants of vegetation changes often remain elusive, especially in global drylands. Here we assess the determinants of grassland greenness on the Mongolian Plateau, one of the world's largest grassland biomes, which covers Mongolia and the province of Inner Mongolia in China. We use spatial panel regressions to quantify the impact of precipitation, temperature, radiation, and the intensity of livestock grazing on the normalized difference vegetation indices (NDVI) during the growing seasons from 1982 to 2015 at the county level. The results suggest that the Mongolian Plateau experienced vegetation greening from 1982 to 2015. Precipitation and animal density were the most influential factors contributing to higher NDVI on the grasslands of Inner Mongolia and Mongolia. Our results highlight the dominant effect of climate variability, and especially of the precipitation variability, on the grassland greenness in Mongolian drylands. The findings challenge the common belief that higher grazing pressure is the key driver for land degradation. The analysis exemplifies how representative wall‐to‐wall results for large areas can be attained from exploring space–time data and adds empirical insights to the puzzling relationship between grazing intensity and vegetation growth in dryland areas.
    Description: European Union's Framework Programme for Research and Innovation ‐ Horizon 2020 (2014‐2020)
    Description: Alexander von Humboldt Foundation of Germany
    Keywords: 333.7 ; China ; climate change ; grassland ; livestock grazing ; NDVI ; spatial panel regression ; vegetation growth
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...