GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (3)
  • Geological Society of London  (2)
  • GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel  (1)
  • Kiel : GEOMAR, Helmholtz-Zentrum für Ozeanforschung
  • 2020-2022  (3)
  • 2000-2004  (3)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2017-06-22
    Description: Ocean bottom seismograph (OBS), multichannel seismic and potential field data reveal the structure of the Vøring Transform Margin (VTM). This transform margin is located at the landward extension of the Jan Mayen Fracture Zone along the southern edge of the Vøring Plateau. The margin consists of two distinctive segments. The northwestern segment is characterized by large amounts of volcanic material. The new OBS data reveal a 30–40 km wide and 17 km thick high-velocity body between underplated continental crust to the northeast and normal oceanic crust in the southwest. The southeastern segment of the mar is similar to transform margins elsewhere. It is characterized by a 20–30 km wide transform margin high and a narrow continent-ocean transition. The volcanic sequences along this margin segment are less than 1 km thick. We conclude from the spatial correspondence of decreased volcanism and the location of the fracture zone, that the amount of volcanism was influenced by the tectonic setting. We propose that (1) lateral heat transport from the oceanic lithosphere to the adjacent continental lithosphere decreased the ambient mantle temperature and melt production along the entire transform margin and (2) that right-stepping of the left-lateral shear zone at the northwestern margin segment caused lithospheric thinning and increased volcanism. The investigated data show no evidence that the breakup volcanism influenced the tectonic development of the southeastern VTM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geological Society of London
    In:  Journal of the Geological Society, 158 . pp. 413-426.
    Publication Date: 2017-10-05
    Description: Voluminous volcanism characterized Early Tertiary continental break-up on the mid-Norwegian continental margin. The distribution of the associated extrusive rocks derived from seismic volcanostratigraphy and potential field data interpretation allows us to divide the Møre, Vøring and Lofoten–Vesterålen margins into five segments. The central Møre Margin and the northern Vøring Margin show combinations of volcanic seismic facies units that are characteristic for typical rifted volcanic margins. The Lofoten–Vesterålen Margin, the southern Vøring Margin and the area near the Jan Mayen Fracture Zone show volcanic seismic facies units that are related to small-volume, submarine volcanism. The distribution of subaerial and submarine deposits indicates variations of subsidence along the margin. Vertical movements on the mid-Norwegian margin were primarily controlled by the amount of magmatic crustal thickening, because both the amount of dynamic uplift by the Icelandic mantle plume and the amount of subsidence due to crustal stretching were fairly constant along the margin. Thus, subaerial deposits indicate a large amount of magmatic crustal thickening and an associated reduction in isostatic subsidence, whereas submarine deposits indicate little magmatic thickening and earlier subsidence. From the distribution of volcanic seismic facies units we infer two main reasons for the different amounts of crustal thickening: (1) a general northward decrease of magmatism due to increasing distance from the hot spot and (2) subdued volcanism near the Jan Mayen Fracture Zone as a result of lateral lithospheric heat transport and cooling of the magmatic source region. Furthermore, we interpret small lateral variations in the distribution of volcanic seismic facies units, such as two sets of Inner Seaward Dipping Reflectors on the central Vøring Margin, as indications of crustal fragmentation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-20
    Description: SO277 OMAX served two scientific projects. The objectives of the first project, SMART, were to develop multi-disciplinary methodologies to detect, quantify, and model offshore groundwater reservoirs in regions dominated by carbonate geology such as the Mediterranean Sea. To this end we acquired controlled-source electromagnetic, seismic, hydroacoustic, geochemical, seafloor imagery data off Malta. Preliminary evaluation of the geophysical data show that there are resisitivity anomalies that may represent offshore freshwater aquifers. The absence of evidence for offshore springs means that these aquifers would be confined and that it will be difficult to use them in a sustainable manner. The objective of the second project, MAPACT-ETNA, is to monitor the flank of Etna volcano on Sicily which is slowly deforming seaward. Here, we deployed six seafloor geodesy stations and six ocean bottom seismometers for long-term observation (1-3 years). In addition, we mapped the seafloor off Mt. Etna and off the island of Stromboli to constrain the geological processes that control volcanic flank stability.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  In: Ocean Margin Systems. , ed. by Wefer, G., Billet, D., Hebbeln, D., Jorgensen, B. B., Schlüter, M. and van Veering, T. Springer, Berlin, Germany, pp. 179-193. ISBN 3-540-43921-8
    Publication Date: 2018-01-19
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  In: Volcanic Debris Avalanches. , ed. by Roverato, M., Dufresne, A. and Procter, J. Springer, Cham, pp. 255-279, 25 pp. ISBN 978-3-030-57411-6
    Publication Date: 2021-01-19
    Description: Landslide deposits offshore many volcanic islands provide evidence of catastrophic lateral collapses. These deposits span a larger volume range than their continental equivalents, and can generate devastating tsunamis. All historical volcanic-island lateral collapses have occurred in arc settings, and have been characterised by rapid failure and efficient tsunami generation. The varied morphology of their deposits is influenced both by lithological properties and the nature of the substrate. Many deposits show evidence of extensive seafloor erosion and transformation into debris flows, and the propagation of frontally-confined sediment deformation beyond and beneath the primary deposit. Mobilised volumes can far exceed that of the initial failure, and accurate deposit interpretation requires internal geophysical imaging and sampling. Around intraplate ocean-island volcanoes, multi-unit turbidites suggest that lateral collapses may occur in discrete stages; although this would reduce their overall tsunamigenic potential, the volumes of individual stages of collapse remain very large. Numerical models of both landslide and tsunami processes in ocean-island settings are difficult to test, and the smaller collapses that typify island arcs are an important focus of research due to their higher global frequency, availability of direct failure and tsunami observations, and a need to better understand the signals of incipient collapse to develop approaches for tsunami hazard mitigation.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Geological Society of London
    In:  In: Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard. , ed. by Georgiopoulou, A. Special Publications Geological Society London, 500 . Geological Society of London, London, pp. 277-288.
    Publication Date: 2020-07-21
    Description: Submarine slope failures pose a direct threat to seafloor installations and coastal communities. Here, we evaluate the influence of free gas on the soil’s shear strength and submarine slope failures in areas with gassy soils based on an extensive literature review. We identify two potential destabilization mechanisms: gas bubbles in the pore space lead to a reduced shear strength of the soil and/or gas induces excess pore pressures that consequently reduce the effective stress in the soil. Our evaluation of the reported mechanical and hydraulic behaviour of gassy sediments indicates that the unfavourable impact of entrapped gas on a soil’s shearing resistance is not sufficient to trigger large scale slope failures. Liquefaction failure due to high gas pressures is, however, a viable scenario in coarse-grained soils. Transferring the gas influence on the soil mechanical behaviour to constitutive models is identified as the most important prerequisite for a successful future analysis of slope stability.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...