GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (1)
  • 2010-2014  (1)
Document type
Language
Years
Year
  • 1
    Publication Date: 2011-03-09
    Description: Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-21
    Description: Remote imaging spectroscopy's role in Earth science will grow in the coming decade as a series of globe-spanning spectroscopy missions launch from NASA, ESA, and other agencies. The nature of remote imaging spectroscopy will change, advancing from short regional studies to address global multi-year questions. The diversity of data will also grow with exposure to a wider range of biomes and atmospheric conditions. To execute these new investigations we must reconcile diverse observing conditions to derive consistent global maps. To this end, rigorous uncertainty quantification and propagation enables an optimal synthesis of data accounting for observing conditions and data quality. Understanding data uncertainties is also important for principled hypothesis testing, information content assessment, and informed decision making by end users. We survey prior efforts in uncertainty quantification for imaging spectroscopy, and describe methods for validating the accuracy of uncertainty predictions. We conclude with a discussion of remaining challenges and promising avenues for future research. © (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...