GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-04
    Description: The Arctic Ocean is undergoing significant changes, with rapid sea ice decline, unprecedented freshwater accumulation, and pronounced regional sea level rise. In this paper, we analyzed the sea level variation in the Arctic Ocean based on a global simulation with 4.5-km resolution in the Arctic Ocean using the multi-resolution Finite Element Sea Ice-Ocean Model (FESOM). The simulation reasonably reproduces both the main spatial features of the sea surface height (SSH) and its temporal evolution in the Arctic Ocean in comparison with tide gauge and satellite data. Using the model results, we investigated the low-frequency variability of the Arctic SSH. Both the first two dominant modes of the annual-mean SSH evolution in the Arctic Ocean present decadal variability and can be mainly attributed to the variability of the halosteric height, thus the freshwater content. The first mode can be explained by the Arctic Oscillation (AO). The AO-related atmospheric circulation drives the accumulation and release of freshwater in the Arctic deep basin and the consequent ocean mass change over the continental shelf, leading to the antiphase changes in SSH between the shelf seas and the deep basin. The second mode shows an antiphase oscillation between the two Arctic deep basins, the Amerasian and Eurasian Basins, which is driven by the Arctic dipole anomaly (DA). The DA-related wind anomaly causes a spatial redistribution of freshwater between the two basins, leading to the antiphase SSH changes. By using a dedicated sensitivity simulation in which the recent sea ice decline is eliminated, we find that the sea ice decline contributed considerably to the observed sea level rise in the Amerasian Basin in the recent decades. Although the sea ice decline did not change the mean SSH averaged over the Arctic Ocean, it significantly changed the spatial pattern of the SSH trend. Our finding indicates that both the wind regime and ongoing sea ice decline should be considered to better understand and predict the changes in regional sea level in the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-16
    Description: The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...