GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (1)
  • 2015-2019  (5)
Document type
Years
Year
  • 1
    Publication Date: 2021-12-15
    Description: Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (~3 m below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-06
    Description: Highlights • A unique and novel CO2 release experiment in the marine environment. • Field-scale simulated leak of CO2 gas from a carbon capture and storage facility. • Experimental design and set-up for the QICS experiment, conducted during the summer of 2012. Abstract Carbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-03
    Description: Highlights • Development of a marine monitoring system suitable for operational CCS is achievable. • Monitoring should be hierarchical, starting with anomaly detection. • Comprehensive baselines are required to support monitoring. Abstract The QICS controlled release experiment demonstrates that leaks of carbon dioxide (CO2) gas can be detected by monitoring acoustic, geochemical and biological parameters within a given marine system. However the natural complexity and variability of marine system responses to (artificial) leakage strongly suggests that there are no absolute indicators of leakage or impact that can unequivocally and universally be used for all potential future storage sites. We suggest a multivariate, hierarchical approach to monitoring, escalating from anomaly detection to attribution, quantification and then impact assessment, as required. Given the spatial heterogeneity of many marine ecosystems it is essential that environmental monitoring programmes are supported by a temporally (tidal, seasonal and annual) and spatially resolved baseline of data from which changes can be accurately identified. In this paper we outline and discuss the options for monitoring methodologies and identify the components of an appropriate baseline survey.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-03
    Description: Highlights • Repeated 2D seismic reflection surveys map migration of CO2 in marine sediments. • CO2 is imaged as bright spots, acoustic blanking, and by reflector terminations. • Seismic chimneys are interpreted as inter-connected micro-scale fractures. • CO2 migration is controlled by stratigraphy and total subsurface gas volume/injection rate. • CO2 changes sediment acoustic properties, including reflectivity and attenuation. Abstract Carbon capture and storage (CCS) is a key technology to potentially mitigate global warming by reducing carbon dioxide (CO2) emissions from industrial facilities and power generation that escape into the atmosphere. To broaden the usage of geological storage as a viable climate mitigation option, it is vital to understand CO2 behaviour after its injection within a storage reservoir, including its potential migration through overlying sediments, as well as biogeochemical and ecological impacts in the event of leakage. The impacts of a CO2 release were investigated by a controlled release experiment that injected CO2 at a known flux into shallow, under-consolidated marine sediments for 37 days. Repeated high-resolution 2D seismic reflection surveying, both pre-release and syn-release, allows the detection of CO2-related anomalies, including: seismic chimneys; enhanced reflectors within the subsurface; and bubbles within the water column. In addition, reflection coefficient and seismic attenuation values calculated for each repeat survey, allow the impact of CO2 flux on sediment acoustic properties to be comparatively monitored throughout the gas release. CO2 migration is interpreted as being predominantly controlled by sediment stratigraphy in the early stages of the experiment. However, either the increasing flow rate, or the total injected volume become the dominant factors determining CO2 migration later in the experiment.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: The developing asymmetry of rifting and continental breakup to form rifted margins has been much debated, as has the formation, mechanics and role of extensional detachments. Bespoke 3D seismic reflection data across the Galicia margin, west of Spain, image in unprecedented detail an asymmetric detachment (the S reflector). Mapping S in 3D reveals its surface is corrugated, proving that the overlying crustal blocks slipped on S surface during the rifting. Crucially, the 3D data show that the corrugations on S perfectly match the corrugations observed on the present-day block-bounding faults, demonstrating that S is a composite surface, comprising the juxtaposed rotated roots of block-bounding faults as in a rolling hinge system with each new fault propagation moving rifting oceanward; changes in the orientation of the corrugations record the same oceanward migration. However, in contrast to previous rolling hinge models, the slip of the crustal blocks on S occurred at angles as low as ∼20°, requiring that S was unusually weak, consistent with the hydration of the underlying mantle by seawater ingress following the embrittlement of the entire crust. As the crust only becomes entirely brittle once thinned to ∼10 km, the asymmetric S detachment and the hyper-extension of the continental crust only developed late in the rifting process, which is consistent with the observed development of asymmetry between conjugate magma poor margin pairs. The 3D volume allows analysis of the heaves and along strike architecture of the normal faults, whose planes laterally die or spatially link together, implying overlaps in faults activity during hyper-extension. Our results thus reveal for the first time the 3D mechanics and timing of detachment faulting growth, the relationship between the detachment and the network of block-bounding faults above it and the key processes controlling the asymmetrical development of conjugate rifted margins. Highlights • The 3D seismic data provide unprecedented details of the mechanisms of breakup. • S detachment is corrugated and made of root zones of successive normal faults. • S rooted steeply but continued to slip at low-angle (down to 20°). • Extensional faulting migrated oceanwards by sets of faults active concurrently. • The asymmetric detachment developed as the crust became entirely brittle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-29
    Description: Marine sediments host large amounts of methane (CH4), which is a potent greenhouse gas. Quantitative estimates for methane release from marine sediments are scarce, and a poorly constrained temporal variability leads to large uncertainties in methane emission scenarios. Here, we use 2D and 3D seismic reflection, multibeam bathymetric, geochemical and sedimentological data to (I) map and describe pockmarks in the Witch Ground Basin (central North Sea), (II) characterize associated sedimentological and fluid migration structures, and (III) analyze the related methane release. More than 1500 pockmarks of two distinct morphological classes spread over an area of 225 km2. The two classes form independently from another and are corresponding to at least two different sources of fluids. Class 1 pockmarks are large in size (〉 6 m deep, 〉 250 m long, and 〉 75 m wide), show active venting, and are located above vertical fluid conduits that hydraulically connect the seafloor with deep methane sources. Class 2 pockmarks, which comprise 99.5 % of all pockmarks, are smaller (0.9‐3.1 m deep, 26‐140 m long, and 14‐57 m wide) and are limited to the soft, fine‐grained sediments of the Witch Ground Formation and possibly sourced by compaction‐related dewatering. Buried pockmarks within the Witch Ground Formation document distinct phases of pockmark formation, likely triggered by external forces related to environmental changes after deglaciation. Thus, greenhouse gas emissions from pockmark fields cannot be based on pockmark numbers and present‐day fluxes but require an analysis of the pockmark forming processes through geological time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...