GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Seafloor elongated depressions are indicators of gas seepage or slope instability. Here we report a sequence of slope-parallel elongated depressions that link to headwalls of sediment slides on upper slope. The depressions of about 250 m in width and several kilometers in length are areas of focused gas discharge indicated by bubble-release into the water column and methane enriched pore waters. Sparker seismic profiles running perpendicular and parallel to the coast, show gas migration pathways and trapped gas underneath these depressions with bright spots and seismic blanking. The data indicate that upward gas migration is the initial reason for fracturing sedimentary layers. In the top sediment where two young stages of landslides can be detected, the slope-parallel sediment weakening lengthens and deepens the surficial fractures, creating the elongated depressions in the seafloor supported by sediment erosion due to slope-parallel water currents.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: This study presents 2D seismic reflection data, seismic velocity analysis, as well as geochemical and isotopic porewater compositions from Opouawe Bank on New Zealand’s Hikurangi subduction margin, providing evidence for essentially pure methane gas seepage. The combination of geochemical information and seismic reflection images is an effective way to investigate the nature of gas migration beneath the seafloor, and to distinguish between water advection and gas ascent. The maximum source depth of the methane that migrates to the seep sites on Opouawe Bank is 1,500–2,100 m below seafloor, generated by low-temperature degradation of organic matter via microbial CO2 reduction. Seismic velocity analysis enabled identifying a zone of gas accumulation underneath the base of gas hydrate stability (BGHS) below the bank. Besides structurally controlled gas migration along conduits, gas migration also takes place along dipping strata across the BGHS. Gas migration on Opouawe Bank is influenced by anticlinal focusing and by several focusing levels within the gas hydrate stability zone.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    In:  GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany, 34 pp.
    Publication Date: 2020-11-18
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    In:  GEOMAR Report, N. Ser. 059 . GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany, 359 + Appendix (in all 802) pp.
    Publication Date: 2021-11-15
    Description: Cruise SO268 is fully integrated into the second phase of the European collaborative JPI-Oceans project MiningImpact and is designed to assess the environmental impacts of deep-sea mining of polymetallic nodules in the Clarion-Clipperton Fracture Zone (CCZ). In particular, the cruise aimed at conducting an independent scientific monitoring of the first industrial test of a pre-protoype nodule collector by the Belgian company DEME-GSR. The work includes collecting the required baseline data in the designated trial and reference sites in the Belgian and German contract areas, a quantification of the spatial and temporal spread of the produced sediment plume during the trials as well as a first assessment of the generated environmental impacts. However, during SO268 Leg 1 DEME-GSR informed us that the collector trials would not take place as scheduled due to unresolvable technical problems. Thus, we adjusted our work plan accordingly by implementing our backup plan. This involved conducting a small-scale sediment plume experiment with a small chain dredge to quantify the spatial and temporal dispersal of the suspended sediment particles, their concentration in the plume as well as the spatial footprint and thickness of the deposited sediment blanket on the seabed. Leg 1 and 2 acquired detailed environmental baseline data in the designated collector trial and reference sites as well as the site of the small-scale sediment plume experiment. The plume experiment was monitored by an array of acoustic and optical sensors and the impacted area was investigated in order to develop standards and protocols for impact assessments and recommendations for marine policy and international legislation. A more technical aim of the cruise was to test tools, technologies, and a concept for the environmental monitoring of future deep-sea mining operations. This comprised oceanographic, biological, microbiological, biogeochemical, and geologic investigations which required the deployment of a multitude of seagoing equipment, such as ROV Kiel 6000 for sampling of sediments, nodules, and benthic fauna as well as carrying out in situ measurements and experiments, and the deployment of the plume sensor array. AUV ABYSS and ROV Kiel 6000 were used for high-resolution acoustic mapping of the seafloor using mounted multibeam systems and video/photo surveys of the manganese nodule habitat. This work was accompanied by video observations with the OFOS system. Several benthic landers and moorings with acoustic and optical sensors were deployed and recovered for the measurements of physical and chemical oceanographic variables. Coring devices (i.e., box corer, gravity corer, TV-guided multiple corer, ROV-operaten push cores) were used to collect sediment samples for biological, geochemical, and microbiological analyses, and a CTD rosette water sampler, in situ pumps, and a bottom water sampler sampled the water column. In addition, recolonization experiments for nodule-associated fauna were started by deploying artificial hard substrates on the seabed of the working areas.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...