GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (1)
  • 2020-2022  (1)
Document type
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: MILAN was a multidisciplinary, international study examining how the diel variability of sea-surface microlayer biogeochemical properties potentially impacts ocean-atmosphere interaction, in order to improve our understanding of this globally important process. The sea-surface microlayer (SML) at the air-sea interface is 〈 1 mm deep but it is physically, chemically and biologically distinct from the underlying water and the atmosphere above. Wind-driven turbulence and solar radiation are important drivers of SML physical and biogeochemical properties. Given that the SML is involved in all ocean-atmosphere exchanges of mass and energy, its response to solar radiation, especially in relation to how it regulates the air-sea exchange of climate-relevant gases and aerosols, is surprisingly poorly characterised. MILAN (sea-surface MIcroLAyer at Night) was an international, multidisciplinary campaign designed to specifically address this issue. In spring 2017, we deployed diverse sampling platforms (research vessels, radio-controlled catamaran, free-drifting buoy) to study full diel cycles in the coastal North Sea SML and in underlying water, and installed a land-based aerosol sampler. We also carried out concurrent ex situ experiments using several microsensors, a laboratory gas exchange tank, a solar simulator, and a sea spray simulation chamber. In this paper we outline the diversity of approaches employed and some initial results obtained during MILAN. Our observations of diel SML variability, e.g. the influence of changing solar radiation on the quantity and quality of organic material, and diel changes in wind intensity primarily forcing air-sea CO2 exchange, underline the value and the need of multidisciplinary campaigns for integrating SML complexity into the context of air-sea interaction.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-08
    Description: Nitrous oxide is an important greenhouse gas and there is a need for sensitive techniques to study its distribution in the environment at concentrations near equilibrium with the atmosphere (9.6 nM in water at 20 °C). Here we present an electrochemical sensor that can quantify N2O in the nanomolar range. The sensor principle relies on a front guard cathode placed in front of the measuring cathode. This cathode is used to periodically block the flux of N2O towards the measuring cathode, thereby creating an amplitude in the signal. This signal amplitude is unaffected by drift in the baseline current and can be read at very high resolution, resulting in a sensitivity of 2 nM N2O for newly constructed sensors. Interference from oxygen is prevented by placing the front guard cathode in oxygen-consuming electrolyte. The sensor was field tested by measuring an N2O profile to a depth of 120 m in the oxygen minimum zone of the Eastern Tropical North Pacific Ocean (ETNP) off the coast of Mexico.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...