GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (101)
  • 2020-2023  (3)
Document type
Keywords
Language
Years
Year
  • 1
    Type of Medium: Book
    Pages: 34 Seiten , Illustrationen
    Parallel Title: GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel Parallele Sprachausgabe Mineralische Rohstoffe aus der Tiefsee
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Meeresbergbau ; Umweltbelastung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (39 Seiten, 1,58 MB) , Illustrationen, Diagramme
    Language: German , English
    Note: Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Förderkennzeichen BMBF 03F0812A , Verbundnummer 01183428 , Sprache der Kurzfassungen: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research Kiel
    Publication Date: 2022-09-13
    Description: 4 – 13 July 2022
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research Kiel
    Publication Date: 2022-09-13
    Description: 27 June – 3 July 2022
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier | Cell Press
    Publication Date: 2023-10-06
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-10-06
    Description: Uncertainties concerning deep-seabed mining relate to the expected impacts on the abyssal benthic and pelagic environment and its ecosystems but also include geopolitical, economic, societal and cultural uncertainty. The uncertain impacts from mining lead to anxiety and a low societal acceptance for the activity and are not the same for everybody at the same time. Hence, uncertainty is an important element of the risk involved in deep-seabed mining. This chapter describes the different risks involved, develops a methodology for risk assessment for the exploitation of marine mineral resources that takes into consideration the state of knowledge and evolving research on deep-sea ecosystems, and informs on possible environmental threshold values in relation to deep-seabed mining operations.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Highlights • Gas release from wells may counteract efforts to mitigate greenhouse gas emissions. • An approach for assessing methane release from marine decommissioned wells. • This gas release largely depends on the presence of shallow gas accumulations. • Methane release from hydrocarbon wells represents a major source in the North Sea. Abstract Hydrocarbon gas emissions from with decommissioned wells are an underreported source of greenhouse gas emissions in oil and gas provinces. The associated emissions may partly counteract efforts to mitigate greenhouse gas emissions from fossil fuel infrastructure. We have developed an approach for assessing methane leakage from marine decommissioned wells based on a combination of existing regional industrial seismic and newly acquired hydroacoustic water column imaging data from the Central North Sea. Here, we present hydroacoustic data which show that 28 out of 43 investigated wells release gas from the seafloor into the water column. This gas release largely depends on the presence of shallow gas accumulations and their distance to the wells. The released gas is likely primarily biogenic methane from shallow sources. In the upper 1,000 m below the seabed, gas migration is likely focused along drilling-induced fractures around the borehole or through non-sealing barriers. Combining available direct measurements for methane release from marine decommissioned wells with our leakage analysis suggests that gas release from investigated decommissioned hydrocarbon wells is a major source of methane in the North Sea (0.9-3.7 [95% confidence interval = 0.7-4.2] kt yr−1 of CH4 for 1,792 wells in the UK sector of the Central North Sea). This means hydrocarbon gas emissions associated with marine hydrocarbon wells are not significant for the global greenhouse gas budget, but have to be considered when compiling regional methane budgets.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts because not only nodules but also benthic fauna and the upper reactive sediment layer are removed through the mining operation and blanketed by resettling material from the suspended sediment plume. This study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event by applying prognostic simulations based on an updated diagenetic background model and validated against novel data on microbiological processes. It was found that the recovery strongly depends on the impact type; complete removal of the reactive surface sediment reduces benthic release of nutrients over centuries, while geochemical processes after resuspension and mixing of the surface sediment are near the pre-impact state 1 year after the disturbance. Furthermore, the geochemical impact in the DISturbance and reCOLonization (DISCOL) experiment area would be mitigated to some degree by a clay-bound Fe(II)-reaction layer, impeding the downward diffusion of oxygen, thus stabilizing the redox zonation of the sediment during transient post-impact recovery. The interdisciplinary (geochemical, numerical and biological) approach highlights the closely linked nature of benthic ecosystem functions, e.g. through bioturbation, microbial biomass and nutrient fluxes, which is also of great importance for the system recovery. It is, however, important to note that the nodule ecosystem may never recover to the pre-impact state without the essential hard substrate and will instead be dominated by different faunal communities, functions and services.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Highlights • Combining porewater geochemistry, geochemical modeling and subsurface geophysical data in order to understand the fluid flow system of Kerch seep area. • This seep area is not in steady state. • Methane transport is in the form of gas bubbles not porewater advection. • High surface temperatures are the result of hydrate formation and not an indication for elevated geothermal gradients. • Modeling says this seep is young (〈500 years old). Abstract High-resolution 3D seismic data in combination with deep-towed sidescan sonar data and porewater analysis give insights into the seafloor expression and the plumbing system of the actively gas emitting Kerch seep area, which is located in the northeastern Black Sea in around 900 m water depth, i.e. well within the gas hydrate stability zone (GHSZ). Our analysis shows that the Kerch seep consists of three closely spaced but individual seeps above a paleo-channel-levee system of the Don Kuban deep-sea fan. We show that mounded seep morphology results from sediment up-doming due to gas overpressure. Each of the seeps hosts its own gas pocket underneath the domes which are fed with methane of predominantly microbial origin along narrow pipes through the GHSZ. Methane transport occurs dominantly in the form of gas bubbles decoupled from fluid advection. Elevated sediment temperatures of up to 0.3 °C above background values are most likely the result of gas hydrate formation within the uppermost 10 m of the sediment column. Compared to other seeps occurring within the GHSZ in the Black Sea overall only scarce gas indications are present in geoacoustic and geophysical data. Transport-reaction modeling suggests that the Kerch seep is a young seep far from steady state and probably not more than 500 years old.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...