GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-25
    Description: The impact of oxygen on the preservation of organic matter in marine surface sediments is still controversial. We revisited this long-standing debate by determining the burial efficiency of sedimentary organic matter in the Black Sea, the largest anoxic and euxinic basin in the modern ocean. Surface sediments were sampled in the Danube paleodelta on the northwestern margin of the Black Sea at 420–1550 m water depth. Steady-state modeling of solid species (particulate organic carbon and nitrogen) and solutes (ammonium, sulfate, and total alkalinity) in sediments was performed to quantify rates of mass accumulation, particulate organic matter (POM) degradation, and POM burial. We develop a novel analytical model to quantify these rates applying an inverse modelling approach to down core data accounting for molecular diffusion, sediment burial and compaction. Our model results indicate that 56.7 ± 6.6 % of the particulate organic matter deposited in the study area is not degraded in surface sediments but accumulates below 10 cm sediment depth. This burial efficiency is substantially higher than those previously derived for seafloor areas underlying oxygenated bottom waters. Hence, our study confirms previous studies showing that euxinic bottom water conditions promote the preservation of particulate organic matter in marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-03
    Description: Highlights • This study simulates the sedimentation-driven development of multiple stacked BSRs in the Danube paleo-delta, Black Sea. • Formation of multiple BSRs in the Black Sea is controlled by the sequence of sedimentation events of the levees induced by sea-level changes. • Kinetics of phase transitions plays a key role in the coexistence, location, and timing of the multiple BSRs. • Development of multiple stacked BSRs is possible only under a narrow range of parameters, unique for the Danube delta setting. Abstract The gas hydrate stability zone (GHSZ) is defined by pressure-temperature-salinity (pTS) constraints of natural gas hydrate (GH) system. It refers to a depth interval which usually extends several hundred meters into the sediment column at sufficient water depths. The lower boundary of the GHSZ often coincides in seismic reflection data with a bottom simulating reflector (BSR), which indicates the transition between the underlying free gas and the overlying no-free gas zone at the thermodynamic stability boundary. The GHSZ in geological systems is dynamic and can shift in response to sedimentation processes and/or changes in environmental conditions such as bottom water temperatures, hydrostatic pressure, and water salinity. The appearance of multiple BSRs has been interpreted as remnants of former GHSZ shifts which have persisted over geological timescales. In this study, we numerically simulate the sedimentation-driven development of multiple stacked BSRs in the Danube deep-sea fan in the Black Sea. We show that in this dynamic sediment depositional regime sufficient amounts of residual gas remain trapped in the former GHSZ, given sufficiently high initial gas hydrate saturations, so that paleo-BSRs could persist over long time scales (similar to 300 kyr). In particular, the formation and persistence of multiple BSRs in the Danube Delta is controlled by the sequence of sedimentation events of the levees induced by sea-level change. The kinetics of methane phase transitions between gas hydrate, dissolved methane, and free gas plays a key role in the coexistence, location and timing of the multiple BSRs. Thus, For a given permeability, distinct multiple BSRs appear only for a narrow range of GH formation (10(-14) 〈 k(f) [mol/m(2) Pa s] 〈= 10(-12)) and dissociation rates (10(-16) 〈 k(d) [mol/m(2) Pa s] 〈 10(-14)).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-13
    Description: Following several small-scale benthic disturbance experiments, an industrial polymetallic nodule collector trial was conducted by the company Global Sea mineral Resources (GSR) in their exploration contract area in the Clarion-Clipperton Zone using the pre-prototype vehicle Patania II (PATII). In this study, meiofaunal (i.e., nematode abundance, ASV diversity and genus composition) and environmental (i.e., grain size, total organic carbon/total nitrogen and pigment) properties are compared between disturbance categories (i.e., Pre-impact, Collector Impact and Plume Impact). One week after the trial, proxies for food availability within the Collector Impact sediments were altered with lower total organic carbon (TOC) and pigment (i.e., CPE: sum of Chlorophyll a and phaeopigments) values. Albeit not significant, the observed decrease of nematode abundance and ASV diversity, further indicate the consequences of the removal of the ecologically important surface sediment layer within the PATII tracks. Next to sediment removal, exposed sediments were modified in different ways (e.g., central strips, parallel caterpillar imprints with alternating bands of depressions/ripples and interface patches) and were also subject to heavy collector-induced sediment blanketing. We propose that these cumulative impacts have led to intricate seabed modifications with various levels of disturbance intensity which resulted in the high meiofaunal variability observed. Adjacent nodule-rich areas (i.e., Plume Impact) received considerable levels of sediment deposition (2-3 cm) and were defined by significantly lower food sources (CPE, TOC, carbon to nitrogen ratio) and an observation of meiofaunal enrichment (i.e., higher average nematode abundance and ASV diversity; although statistically non-significant), but mechanisms behind these ecological changes (e.g., suspended material-surface fluxes, passive dispersal of fauna in the plume vs. active upward migration and “viability” of redeposited fauna) remain unresolved. We conclude that complex benthic pressure-response relationships associated with the PATII trial, combined with the high degree of natural spatial and temporal variability in abyssal meiofaunal communities and sedimentary parameters, complicates the quantitative assessment of deep-sea mining associated disturbances.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-27
    Description: The crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion-engine to electric vehicles. This transition currently requires additional mineral resources, such as nickel and cobalt used in car batteries, presently obtained from land-based mines. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. Few comparisons of environmental impacts of solely expanding land-based mining versus extending mining to the deep seabed for the additional resources exist and for biodiversity only qualitative. Here, we present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics. This framework (Environmental Impact Wheel) includes a suite of physicochemical and biological components, rather than a few selected metrics, surrogates, or proxies. It is modified from the “recovery wheel” presented in the International Standards for the Practice of Ecological Restoration to address impacts rather than recovery. The wheel includes six attributes (physical condition, community composition, structural diversity, ecosystem function, external exchanges and absence of threats). Each has 3–5 sub attributes, in turn measured with several indicators. The framework includes five steps: (1) identifying geographic scope; (2) identifying relevant spatiotemporal scales; (3) selecting relevant indicators for each sub-attribute; (4) aggregating changes in indicators to scores; and (5) generating Environmental Impact Wheels for targeted comparisons. To move forward comparisons of land-based with deep seabed mining, thresholds of the indicators that reflect the range in severity of environmental impacts are needed. Indicators should be based on clearly articulated environmental goals, with objectives and targets that are specific, measurable, achievable, relevant, and time bound.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-21
    Description: Underway temperature and salinity data was collected along the cruise track with two autonomous measurement systems, called self-cleaning monitoring boxes (SMBs). Usually, the SMBs are changed after ~24 hours. While temperature is taken at the water inlet in about 4 m depth, salinity is estimated within the SMB from conductivity and interior temperature. No temperature and salinity calibration were performed. For details to all processing steps see Data Processing Report.
    Keywords: Calculated from internal temperature and conductivity; Conductivity; DAM_Underway; DAM Underway Research Data; DATE/TIME; DEPTH, water; Digital oceanographic thermometer, Sea-Bird, SBE 38; LATITUDE; LONGITUDE; Measurement container; Nodule Monit. II; Quality flag, salinity; Quality flag, water temperature; Salinity; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); SO295; SO295_0_Underway-4; Sonne_2; Temperature, water; Temperature, water, internal; Thermosalinograph; Thermosalinograph, Sea-Bird, SBE 45; TSG
    Type: Dataset
    Format: text/tab-separated-values, 446156 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...