GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Oikos, Wiley
    Abstract: Compositional measurements from species assemblages define a high dimensional dataspace in which the data can form complex structures, termed manifolds. Comparing assemblages in this dataspace is difficult because the data is often sparse relative to its dimensionality and the complex structure of the manifold introduces bias and error in measurements of distance. Here, we apply diffusion maps, a manifold learning method, to find and characterize manifolds in high‐dimensional compositional data. We show that diffusion maps embed the data in reduced dimensions in which the Euclidean distance between data points approximates the distance between them along the manifold. This is especially useful when species turnover is high, as it provides a way to measure meaningful distances between assemblages even when they harbor disjoint sets of species. We anticipate diffusion maps will therefore be particularly useful for characterizing community change over large spatial and temporal scales.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Nature Ecology & Evolution Vol. 7, No. 7 ( 2023-06-05), p. 994-1001
    In: Nature Ecology & Evolution, Springer Science and Business Media LLC, Vol. 7, No. 7 ( 2023-06-05), p. 994-1001
    Abstract: The discrepancy between global loss and local constant species richness has led to debates over data quality, systematic biases in monitoring programmes and the adequacy of species richness to capture changes in biodiversity. We show that, more fundamentally, null expectations of stable richness can be wrong, despite independent yet equal colonization and extinction. We analysed fish and bird time series and found an overall richness increase. This increase reflects a systematic bias towards an earlier detection of colonizations than extinctions. To understand how much this bias influences richness trends, we simulated time series using a neutral model controlling for equilibrium richness and temporal autocorrelation (that is, no trend expected). These simulated time series showed significant changes in richness, highlighting the effect of temporal autocorrelation on the expected baseline for species richness changes. The finite nature of time series, the long persistence of declining populations and the potential strong dispersal limitation probably lead to richness changes when changing conditions promote compositional turnover. Temporal analyses of richness should incorporate this bias by considering appropriate neutral baselines for richness changes. Absence of richness trends over time, as previously reported, can actually reflect a negative deviation from the positive biodiversity trend expected by default.
    Type of Medium: Online Resource
    ISSN: 2397-334X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2879715-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Marine Biodiversity, Springer Science and Business Media LLC, Vol. 53, No. 3 ( 2023-06)
    Abstract: Thresholds and tipping points are frequently used concepts to address the risks of global change pressures and their mitigation. It is tempting to also consider them to understand biodiversity change and design measures to ensure biotic integrity. Here, we argue that thresholds and tipping points do not work well in the context of biodiversity change for conceptual, ethical, and empirical reasons. Defining a threshold for biodiversity change (a maximum tolerable degree of turnover or loss) neglects that ecosystem multifunctionality often relies on the complete entangled web of species interactions and invokes the ethical issue of declaring some biodiversity dispensable. Alternatively defining a threshold for pressures on biodiversity might seem more straightforward as it addresses the causes of biodiversity change. However, most biodiversity change appears to be gradual and accumulating over time rather than reflecting a disproportionate change when transgressing a pressure threshold. Moreover, biodiversity change is not in synchrony with environmental change, but massively delayed through inertia inflicted by population dynamics and demography. In consequence, formulating environmental management targets as preventing the transgression of thresholds is less useful in the context of biodiversity change, as such thresholds neither capture how biodiversity responds to anthropogenic pressures nor how it links to ecosystem functioning. Instead, addressing biodiversity change requires reflecting the spatiotemporal complexity of altered local community dynamics and temporal turnover in composition leading to shifts in distributional ranges and species interactions.
    Type of Medium: Online Resource
    ISSN: 1867-1616 , 1867-1624
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2478073-X
    detail.hit.zdb_id: 2493558-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: People and Nature, Wiley, Vol. 5, No. 1 ( 2023-02), p. 21-33
    Abstract: Read the free Plain Language Summary for this article on the Journal blog.
    Type of Medium: Online Resource
    ISSN: 2575-8314 , 2575-8314
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 3005781-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Ecology and Evolution Vol. 11 ( 2023-2-1)
    In: Frontiers in Ecology and Evolution, Frontiers Media SA, Vol. 11 ( 2023-2-1)
    Abstract: Any measure of ecological stability scales with the spatial and temporal extent of the data on which it is based. The magnitude of stabilization effects at increasing spatial scale is determined by the degree of synchrony between local and regional species populations. Methods We applied two recently developed approaches to quantify these stabilizing effects to time series records from three aquatic monitoring data sets differing in environmental context and organism type. Results and Discussion We found that the amount and general patterns of stabilization with increasing spatial scale only varied slightly across the investigated species groups and systems. In all three data sets, the relative contribution of stabilizing effects via asynchronous dynamics across space was higher than compensatory dynamics due to differences in biomass fluctuations across species and populations. When relating the stabilizing effects of individual species and sites to species and site-specific characteristics as well as community composition and aspects of spatial biomass distribution patterns, however, we found that the effects of single species and sites showed large differences and were highly context dependent, i.e., dominant species can but did not necessarily have highly stabilizing or destabilizing effects on overall community biomass. The sign and magnitude of individual contributions depended on community structure and the spatial distribution of biomass and species in space. Our study therefore provides new insights into the mechanistic understanding of ecological stability patterns across scales in natural species communities.
    Type of Medium: Online Resource
    ISSN: 2296-701X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2745634-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Oikos, Wiley, Vol. 2023, No. 4 ( 2023-04)
    Abstract: The availability of underwater light, as primary energy source for all aquatic photoautotrophs, is (and will further be) altered by changing precipitation, water turbidity, mixing depth, and terrestrial input of chromophoric dissolved organic matter (CDOM). While experimental manipulations of CDOM input and turbidity are frequent, they often involve multiple interdependent changes (light, nutrients, C‐supply). To create a baseline for the expected effects of light reduction alone, we performed a weighted meta‐analysis on 240 published experiments (from 108 studies yielding 2500 effect sizes) that directly reduced light availability and measured marine autotroph responses. Across all organisms, habitats, and response variables, reduced light led to an average 23% reduction in biomass‐related performance, whereas the effect sizes on physiological performance did not significantly differ from zero. Especially, pigment content increased with reduced light, which indicated a strong physiological plasticity in response to diminished light. This acclimation potential was also indicated by light reduction effects minimized if the experiments lasted longer. Nevertheless, the performance (especially biomass accrual) was reduced the more the less light intensity remained available. Light reduction effects were also more negative at higher temperatures if ambient light conditions were poor. Macrophytes or benthic systems were more negatively affected by light reduction than microalgae or plankton systems, especially in physiological responses were microalgae and plankton showed slightly positive responses. Otherwise, the effect magnitudes remained surprisingly consistent across habitats and aspects of experimental design. Therefore, the strong observed log–linear relationship between remaining light and autotrophic performance can be used as a baseline to predict marine primary production in future light climate.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...