GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
  • 2023  (2)
Material
Language
Years
  • 2020-2024  (2)
Year
  • 2023  (2)
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Vol. 952, No. 1 ( 2023-07-01), p. 66-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 952, No. 1 ( 2023-07-01), p. 66-
    Abstract: We continue our series of papers on phase-space distributions of stars in the Milky Way based on photometrically derived metallicities and Gaia astrometry, with a focus on the halo−disk interface in the local volume. To exploit various photometric databases, we develop a method of empirically calibrating synthetic stellar spectra based on a comparison with observations of stellar sequences and individual stars in the Sloan Digital Sky Survey, the SkyMapper Sky Survey, and the Pan-STARRS1 surveys, overcoming band-specific corrections employed in our previous work. In addition, photometric zero-point corrections are derived to provide an internally consistent photometric system with a spatially uniform metallicity zero-point. Using our phase-space diagrams, we find a remarkably narrow sequence in the rotational velocity ( v ϕ ) versus metallicity ([Fe/H]) space for a sample of high proper-motion stars ( 〉 25 mas yr −1 ), which runs along Gaia Sausage/Enceladus (GSE) and the Splash substructures and is linked to the disk, spanning nearly 2 dex in [Fe/H]. Notably, a rapid increase of v ϕ from a nearly zero net rotation to ∼180 km s −1 in a narrow metallicity interval (−0.6 ≲ [Fe/H] ≲ −0.4) suggests that some of these stars emerged quickly on a short gas-depletion timescale. Through measurements of a scale height and length, we argue that these stars are distinct from those heated dynamically by mergers. This chain of high proper-motion stars provides additional support for recent discoveries suggesting that a starburst took place when the young Milky Way encountered the gas-rich GSE progenitor, which eventually led to the settling of metal-enriched gas onto the disk.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Vol. 945, No. 1 ( 2023-03-01), p. 56-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 945, No. 1 ( 2023-03-01), p. 56-
    Abstract: We present a chemodynamical analysis of 11,562 metal-rich, high-eccentricity halo-like main-sequence stars, which have been referred to as the Splash or Splashed Disk, selected from the Sloan Digital Sky Survey and Large Sky Area Multi-Object Fiber Spectroscopic Telescope. When divided into two groups, a low-[ α /Fe] population (LAP) and a high-[ α /Fe] population (HAP), based on kinematics and chemistry, we find that they exhibit very distinct properties, indicative of different origins. From a detailed analysis of their orbital inclinations, we suggest that the HAP arises from a large fraction (∼90%) of heated disk stars and a small fraction (∼10%) of in situ stars from a starburst population, likely induced by interaction of the Milky Way with the Gaia-Sausage/Enceladus (GSE) or another early merger. The LAP comprises about half accreted stars from the GSE and half formed by the GSE-induced starburst. Our findings further imply that the Splash stars in our sample originated from at least three different mechanisms: accretion, disk heating, and a merger-induced starburst.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...