GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • S. Karger AG  (4)
Material
Publisher
  • S. Karger AG  (4)
Language
Years
FID
  • 1
    Online Resource
    Online Resource
    S. Karger AG ; 2015
    In:  Cellular Physiology and Biochemistry Vol. 35, No. 4 ( 2015), p. 1454-1466
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 35, No. 4 ( 2015), p. 1454-1466
    Abstract: Background: The accumulation of cytokines in the plasma after trauma can induce myocyte apoptosis. We aimed to identify which cytokine(s) present in the plasma responsible for myocyte apoptosis, and delineated the signal transduction mechanism in rats subjected to surgical trauma. Methods: Rats were randomized into two groups: control and trauma groups, which was divided into five subgroups: posttraumatic 0, 3, 6, 12, and 24 h subgroups. Cardiomyocytes isolated from traumatized rats were incubated with one of the factors for 12 h (normal plasma; Cytomix; TNF-α; IL-1β; IFN-γ; trauma plasma; anti-TNF-α antibody; SB203580). Myocyte apoptosis, cytokine levels, and MAPKs activation, as the primary experimental outcomes, were measured by TUNEL, flow cytometry, ELISA and Western blot, respectively. Results: Myocyte apoptosis was induced by surgical trauma during the early stage after trauma. Accompanying this change, plasma TNF-α, IL-1β, and IFN-γ levels were elevated in traumatized rats. Incubation of traumatized cardiomyocytes with cytomix or TNF-α alone induced myocyte apoptosis, and increased the activation of p38 and ERK1/2. Myocyte apoptosis and p38 activation were elevated in traumatized cardiomyocytes with trauma plasma, and these increases were partly abolished by anti-TNF-α antibody or SB203580. Conclusion: Our study demonstrated that there exists the TNF-α-mediated-p38-dependent signaling pathway that contributed to posttraumatic myocyte apoptosis of rats undergoing surgical trauma.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2015
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    S. Karger AG ; 2014
    In:  Cellular Physiology and Biochemistry Vol. 34, No. 4 ( 2014), p. 1227-1240
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 34, No. 4 ( 2014), p. 1227-1240
    Type of Medium: Online Resource
    ISSN: 1421-9778 , 1015-8987
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2014
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 35, No. 1 ( 2015), p. 126-136
    Abstract: Background: There is an increasing interest in the role of astrocytes contributing to the intrinsic bioremediation of ischemic brain injury. The purpose of this study was to disclose the effects and mechanism of midazolam (MDZ) on the proliferation and apoptosis of astrocytes under oxygen glucose deprivation (OGD) condition. Methods: The astrocytes were assigned randomly into four groups: control group, OGD group, OGD+MDZ group, and OGD+MDZ+IL-6 group. The astrocytes were treated with MDZ at dose of 10 μmol/L in OGD+MDZ group. And in OGD+MDZ+IL-6 group, the astrocytes were treated with MDZ at dose of 10μmol/L and IL-6 at dose of 50 ng/mL. MTT assay was used to assess cell proliferation, and cell apoptosis was analyzed by TUNEL apoptosis assay kit and flow cytometry. Furthermore, the expression of JAK2, p-JAK2, STAT3, p-STAT3, Bcl-2, Bax and Caspase-3 proteins were determined by western blotting assay. Results: Astrocytes proliferation was decreased obviously in OGD group, while MDZ could increase astrocytes proliferation under OGD condition. Moreover, OGD could induce apoptosis in astrocytes and MDZ could play an anti-apoptotic role. However, IL-6, a JAK2 activator, could attenuate cell proliferation and anti-apoptotic effects of MDZ in astrocytes. In addition, the expression of Bcl-2 protein in MDZ group increased markedly, while the JAK2/STAT3 signal proteins, Bax and Caspase-3 proteins decreased relative to OGD group. But IL-6 could counteract the anti-apoptotic effects of MDZ. Conclusion: Midazolam has protective effects on the proliferation and apoptosis of astrocytes via JAK2/STAT3 signal pathway in vitro. We firstly disclose the beneficial roles of midazolam in astrocytes under ischemic condition, which may be a rational treatment selection for ischemic cerebral protection.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2015
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 36, No. 4 ( 2015), p. 1527-1538
    Abstract: Background/Aims: The effects of H2S on cerebral inflammatory reaction after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) remain poorly understood. In this study, we investigated the effects of exogenous 40 ppm and 80 ppm H2S gas on inflammatory reaction and neurological outcome after CA/CPR. Methods: CA was induced by ventricular fibrillation and followed by CPR. Forty or 80 ppm H2S was inhaled for 1 h immediately following CPR. The levels of IL-1ß, IL-6 and TNF-a, the myeloperoxidase (MPO) activity, the expression of iNOS and ICAM-1, and the phosphorylation and translocation of NF-κB were evaluated at 24 h after CA/CPR. The tape removal test, survival rate and hippocampal neuronal counts were investigated at 14 d after CA/CPR. Results: CA/CPR induced significant increases in IL-1ß, IL-6, TNF-a and MPO activity. The phosphorylation and translocation of NF-κB, and the expression of iNOS and ICAM-1 were increased significantly. Inhalation of 40 or 80 ppm H2S gas decreased these inflammatory cytokines. Furthermore, 40 or 80 ppm H2S inhibited the activation of NF-κB and the downstream proinflammatory mediators iNOS and ICAM-1. H2S inhalation also improved neurological function, 14-d survival rate, and reduced hippocampal neuronal loss. Conclusion: These results indicated that inhalation of H2S protected against brain injury after CA/CPR. The mechanisms underlying protective effects of H2S were associated with the inhibition of CA/CPR-induced inflammation reactions by reducing IL-1ß, IL-6 and TNF-a, and concomitantly inhibiting the activation and infiltration of neutrophils. The beneficial effects of H2S might be mediated by downregulation of NF-κB and the downstream proinflammatory signaling pathway.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2015
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...