GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (3)
  • 2020-2024  (3)
  • 2022  (3)
Document type
Publisher
Years
  • 2020-2024  (3)
Year
  • 1
    Publication Date: 2024-02-07
    Description: Oceanic transform faults (OTFs) are an inherent part of seafloor spreading and plate tectonics, whereas the process controlling their morphology remains enigmatic. Here, we systematically quantify variations in transform morphology and their dependence on spreading rate and age-offset, based on a compilation of shipborne bathymetric data from 94 OTFs at ultraslow- to intermediate-spreading ridges. In general, the length, width and depth of OTFs scale systematically better with age-offset rather than spreading rate. This observation supports recent geodynamic models proposing that cross-transform extension scaling with age-offset, is a key process of transform dynamics. On the global scale, OTFs with larger age-offsets tend to have longer, wider, and deeper valleys. However, at small age-offsets (〈5 Myr), scatters in the depth and width of OTFs increase, indicating that small age-offset OTFs with weak lithospheric strength are easily affected by secondary tectonic processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The VP/VS ratio is an important property for understanding magmatic and tectonic processes at passive continental margins as it is an indicator of the crustal composition. To classify the dominant lithologies in the Zhongsha Block, South China Sea (SCS), we present a detailed VP/VS crustal model based on the independent tomographic inversion of P wave and S wave data. The average VP/VS in the crust of the Zhongsha Block is ∼1.77, indicating an overall felsic to intermediate composition lacking remnant magmatic intrusive rocks. The VP-density relationship from gravity modeling suggests that the lower crust of the extended continental domain contains more greenschist and hence may have experienced metamorphism resulting from an elevated geotherm in the Northwest Sub-basin either during the syn-spreading or postspreading stage. The variability of the VP/VS ratio in the continental block is larger than that in the oceanic basin, showing distinct crustal properties. Several low VP/VS ratio anomalies (VP/VS 〈 1.7) were found near tectonic boundaries and are interpreted to either result from felsic metamorphism during an interval of rifting, or during the migration of magma along faults and cracks in the postrift period. VP/VS ratios occurring in concert with high VP anomalies in the continent-ocean transition zone support a mafic composition of metapelitic granulite, which was either formed by magmatic intrusions or contact with mantle melting that stem from the upwelling of the asthenospheric mantle during the initial break-up and onset of the seafloor spreading stage in the SCS.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The intraplate Hawaiian-Emperor Seamount Chain has long been considered a hotspot track generated by the motion of the Pacific plate over a deep mantle plume, and an ideal feature therefore for studies of volcanic structure, magma supply, plume-crust interaction, flexural loading, and upper mantle rheology. Despite their importance as a major component of the chain, the Emperor Seamounts have been relatively little studied. In this paper, we present the results of an active-source wide-angle reflection and refraction experiment conducted along an ocean-bottom-seismograph (OBS) line oriented perpendicular to the seamount chain, crossing Jimmu guyot. The tomographic P wave velocity model, using ∼20,000 travel times from 26 OBSs, suggests that there is a high-velocity (〉6.0 km/s) intrusive core within the edifice, and the extrusive-to-intrusive ratio is estimated to be ∼2.5, indicating that Jimmu was built mainly by extrusive processes. The total volume for magmatic material above the top of the oceanic crust is ∼5.3 × 104 km3, and the related volume flux is ∼0.96 m3/s during the formation of Jimmu. Under volcanic loading, the ∼5.3-km-thick oceanic crust is depressed by ∼3.8 km over a broad region. Using the standard relationships between Vp and density, the velocity model is verified by gravity modeling, and plate flexure modeling indicates an effective elastic thickness (Te) of ∼14 km. Finally, we find no evidence for large-scale magmatic underplating beneath the pre-existing crust.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...