GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (2)
  • Nature Research  (1)
  • 2020-2024  (3)
  • 2021  (3)
Document type
Years
  • 2020-2024  (3)
Year
  • 1
    Publication Date: 2024-02-07
    Description: Deep convection and associated deep water formation are key processes for climate variability, since they impact the oceanic uptake of heat and trace gases and alter the structure and strength of the global overturning circulation. For long, deep convection in the subpolar North Atlantic was thought to be confined to the central Labrador Sea in the western subpolar gyre (SPG). However, there is increasing observational evidence that deep convection also has occurred in the eastern SPG south of Cape Farewell and in the Irminger Sea, in particular, in 2015–2018. Here we assess this recent event in the context of the temporal evolution of spatial deep convection patterns in the SPG since the mid-twentieth century, using realistic eddy-rich ocean model simulations. These reveal a large interannual variability with changing contributions of the eastern SPG to the total deep convection volume. Notably, in the late 1980s to early 1990s, the period with highest deep convection intensity in the Labrador Sea related to a persistent positive phase of the North Atlantic Oscillation, the relative contribution of the eastern SPG was small. In contrast, in 2015–2018, deep convection occurred with an unprecedented large relative contribution of the eastern SPG. This is partly linked to a smaller north-westward extent of deep convection in the Labrador Sea compared to previous periods of intensified deep convection, and may be a first fingerprint of freshening trends in the Labrador Sea potentially associated with enhanced Greenland melting and the oceanic advection of the 2012–2016 eastern North Atlantic fresh anomaly.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The southward flow of North Atlantic Deep Water makes up the major component of the deepwater limb of the Atlantic Meridional Overturning Circulation (AMOC). In the subtropical North Atlantic, it's flow is concentrated along the continental slope, forming a coherent Deep Western Boundary Current (DWBC). Both, observations and models show a high variability of the flow in this region. Here we use an eddy-rich ocean model to show that this variability is mainly caused by eddies and meanders. Their formation process involves an important contribution from energy transfer by barotropic instability. They occur along the entire DWBC pathway and introduce several recirculation gyres that result in a decorrelation of the DWBC transport at 26.5°N and 16°N, despite the fact that a considerable mean transport of 20 Sv connects the two latitudes. Water in the DWBC at 26.5°N is partly returned northward. Because the amount of water returned depends on the DWBC transport itself, a stronger DWBC does not necessarily lead to an increased amount of water that reaches 16°N. Along the pathway to 16°N, the transport signal is altered by a broad and temporally variable transit time distribution. Thus, advection in the DWBC cannot account for coherent AMOC changes on interannual timescales seen in the model.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Agulhas leakage, the warm and salty inflow of Indian Ocean water into the Atlantic Ocean, is of importance for the climate-relevant Atlantic Meridional Overturning Circulation. South of Africa, the eastward turning Agulhas Current sheds Agulhas rings, cyclones and filaments of order 100 km that carry the Indian Ocean water into the Cape Basin and further into the Atlantic. Here, we show that the resolution of submesoscale flows of order 10 km in an ocean model leads to 40 % more Agulhas leakage and more realistic Cape Basin water-masses compared to a parallel non-submesoscale resolving simulation. Moreover, we show that submesoscale flows strengthen shear-edge eddies and in consequence lee cyclones at the northern edge of the Agulhas Current, as well as the leakage pathway in the region of the filaments that takes place outside of mesoscale eddies. This indicates that the increase in leakage can be attributed to stronger Agulhas filaments, when submesoscale flows are resolved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...