GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
  • 2020  (4)
Document type
Keywords
Years
  • 2020-2024  (4)
Year
  • 1
    Publication Date: 2023-02-08
    Description: MILAN was a multidisciplinary, international study examining how the diel variability of sea-surface microlayer biogeochemical properties potentially impacts ocean-atmosphere interaction, in order to improve our understanding of this globally important process. The sea-surface microlayer (SML) at the air-sea interface is 〈 1 mm deep but it is physically, chemically and biologically distinct from the underlying water and the atmosphere above. Wind-driven turbulence and solar radiation are important drivers of SML physical and biogeochemical properties. Given that the SML is involved in all ocean-atmosphere exchanges of mass and energy, its response to solar radiation, especially in relation to how it regulates the air-sea exchange of climate-relevant gases and aerosols, is surprisingly poorly characterised. MILAN (sea-surface MIcroLAyer at Night) was an international, multidisciplinary campaign designed to specifically address this issue. In spring 2017, we deployed diverse sampling platforms (research vessels, radio-controlled catamaran, free-drifting buoy) to study full diel cycles in the coastal North Sea SML and in underlying water, and installed a land-based aerosol sampler. We also carried out concurrent ex situ experiments using several microsensors, a laboratory gas exchange tank, a solar simulator, and a sea spray simulation chamber. In this paper we outline the diversity of approaches employed and some initial results obtained during MILAN. Our observations of diel SML variability, e.g. the influence of changing solar radiation on the quantity and quality of organic material, and diel changes in wind intensity primarily forcing air-sea CO2 exchange, underline the value and the need of multidisciplinary campaigns for integrating SML complexity into the context of air-sea interaction.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-28
    Description: Data presented here were collected during the two cruises SO248 and SO254 with RV SONNE in the Pacific Ocean at 25 stations along a transect closely following 180° longitude E/W between 52.1°S southeast of New Zealand and 58.9°N in the Bering Sea. The first cruise SO248 was conducted from Auckland, New Zealand, to Dutch Harbor, USA (May 1st, 2016 - June 3rd, 2016) and the second (SO254) took place from January 26th, 2017 - February 27th, 2017 and started and ended in Auckland, New Zealand. The data comprises hydrographical, chemical, biogeochemical and biological parameters.
    Keywords: Acetone extraction, fluorescence determination; Amino acid, total dissolved free; Amino acid, total dissolved free uptake; Amino acid, total hydrolysable dissolved; Amino acids, dissolved combined; BacGeoPac; Bacteria; Bacteria, heterotrophic with relatively low DNA content; BD FACS ARIA3 Flow Cytometer, autofluorescence (AF); Bering Sea; biogeochemistry; Biogeographical province; Biogeographical province after Longhurst (2006); biogeography; Breakdown of fluorescent substrate analoga (Obayashi and Suzuki, 2005, Limnol Oceanogr; Balmonte et al ., 2018, Environ Microbiol); Calculated; Calculated; DCAA = THDAA - DFAA; after Lunau et al. (2006); Calculated from downwelling photosynthetically active radiation PAR Ed, integrated from 400 - 700 nm; Carbohydrates, dissolved, neutral free; Carbohydrates, dissolved, neutral free, uptake; Carbohydrates, total hydrolyzable; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; CARD-FISH; Catalyzed reporter deposition fluorescence in situ hybridisation (CARD-FISH); Catalyzed reporter deposition fluorescence in situ hybridisation (CARD-FISH), % of the DAPI positive stained cells; Chlorophyll a; Combustion by FlashEA 1112 CHN-analyzer; Conductivity; CTD, Sea-Bird, SBE 911plus [SN: 09-1266]; CTD, SEA-BIRD SBE 911plus, SN 5828 / SN 4529; CTD/Rosette; CTD-RO; cyanobacteria; Cyanobacteria; Cyanobacteria, cell size, forward scatter; Cyanobacteria, cell size, side scatter; Cytophaga-Flavobacteria; Cytophaga-Flavobacteria, cells; DATE/TIME; Density, sigma-theta (0); Depth, relative; DEPTH, water; Depth of Secchi Disk; ELEVATION; Equatorial Pacific; Eukaryotes; Eukaryotes, cell size, forward scatter; Eukaryotes, cell size, relative; Eukaryotes, cell size, side scatter; Event label; Flagellates+algae; Flagellates+algae, cell size, forward scatter; Flagellates+algae, cell size, side scatter; Flow Cytometer, BD Biosciences, C6 [autofluorescence, calibration of the forward scatter (FSC)]; Flow Cytometer, BD Biosciences, C6 [autofluorescence (AF)]; Flow Cytometer, BD Biosciences, C6 [calibration of the forward scatter (FSC), only relative cell size due to calibration after Giebel et al. (2019)]; Flow Cytometer, BD Biosciences, C6 [SybrGreenI staining]; flow cytometry; Fluorescence, chlorophyll; Fluorescence determination; Fluorometer, WET Labs ECO AFL/FL; Forel-Ule index; Gammaproteobacteria; Gammaproteobacteria, cells; Generation time; heterotrophic prokaryotic production; High nucleic acid bacteria; High nucleic acid bacteria, cell size, forward scatter; High nucleic acid bacteria, cell size, relative; High nucleic acid bacteria, cell size, side scatter; High performance liquid chromatography (HPLC) using an Agilent 1200 HPLC device after an ortho-phthaldialdehyde precolumn derivatization (Lindroth and Mopper, 1979) with slight modifications as described by Lunau et al. (2006); High Performance Liquid Chromatography (HPLC) using anion-exchange columns by pulsed amperometric detection according to Mopper et al. (1992); HNA; HPLC after Lindroth and Mopper (1979) with slight modifications as described by Lunau et al. (2006); Hydrolysis rate, beta-Glucose; Hydrolysis rate, Leucine; Incorporation of 14C-leucine (Simon and Azam, 1989, http://www.int-res.com/articles/meps/51/m051p201.pdf; Simon et al. 2004, doi:10.4319/lo.2004.49.4.1035); Incorporation of 3H-acetate (Simon et al. 2007, doi:10.4319/lo.2007.52.1.0085); Incorporation of 3H-Amino acid mix (Simon et al. 2004, doi:10.4319/lo.2004.49.4.1035; 2007, doi:10.4319/lo.2007.52.1.0085); Incorporation of 3H-Glucose (Simon et al. 2004, doi:10.4319/lo.2004.49.4.1035; 2007, doi:10.4319/lo.2007.52.1.0085); LATITUDE; LNA; LONGITUDE; Low nucleic acid bacteria; Low nucleic acid bacteria, cell size, forward scatter; Low nucleic acid bacteria, cell size, relative; Low nucleic acid bacteria, cell size, side scatter; Microplankton; Microplankton, cell size, forward scatter; Microplankton, cell size, relative; Microplankton, cell size, side scatter; Mixed layer depth; Nanoplankton; Nanoplankton, cell size, forward scatter; Nanoplankton, cell size, relative; Nanoplankton, cell size, side scatter; Nitrate; Nitrite; Nitrogen, organic, particulate; Nitrogen oxide; North Pacific Ocean; Ökologie, Physiologie und Molekularbiologie der Roseobacter-Gruppe: Aufbruch zu einem systembiologischen Verständnis einer global wichtigen Gruppe mariner Bakterien; Oxygen; Oxygen optode, Aanderaa, type 4831F; Pacific Ocean; Phosphate; Picoplankton; Picoplankton, cell size, forward scatter; Picoplankton, cell size, relative; Picoplankton, cell size, side scatter; Polaribacter; Polaribacter, cells; Pori Bac NewZ; Pressure, water; Prochlorococcus; Prochlorococcus, cell size, forward scatter; Prochlorococcus, cell size, side scatter; Prokaryotes, cell size, forward scatter; Prokaryotes, cell size, relative; Prokaryotes, growth rate; Prokaryotes, heterotroph; Prokaryotes, heterotroph, biomass production in mass protein; Prokaryotes, heterotroph, carbon production; Prokaryotes, heterotroph, cell size, side scatter; Prokaryotes, heterotroph, nitrogen production; Prokaryotes, heterotroph, protein production; Roseobacter; Roseobacter, cells; Roseobacter clade affiliated cluster, Planktomarina temperata; Roseobacter clade affiliated cluster, Planktomarina temperata, cells; RV Sonne; Salinity; SAR11; SAR11, cells; Silicate; SO248; SO248_10-2a; SO248_1-1; SO248_11-1; SO248_12-1; SO248_13-3; SO248_14-3; SO248_15-1; SO248_16-2; SO248_17-4; SO248_18-3; SO248_19-1; SO248_2-1; SO248_3-1; SO248_4-3; SO248_5-1; SO248_6-2; SO248_7-1; SO248_8-4; SO248_9-6; SO254; SO254_11-1; SO254_32-1; SO254_38-1; SO254_47-1; SO254_61-1; SO254_65-1; Sonne_2; Sound velocity in water; South Pacific Ocean; Station label; Synechococcus; Synechococcus, cell size, forward scatter; Synechococcus, cell size, side scatter; Temperature, water; Temperature, water, potential; TRR51; Turbidity (Nephelometric turbidity unit); Turnover rate, acetate; Turnover rate, amino acids, dissolved, free; Turnover rate, glucose
    Type: Dataset
    Format: text/tab-separated-values, 19990 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-01-12
    Keywords: AWI_PhyOce; DATE/TIME; DEPTH, water; HE545; HE545_0_Underway-7; Heincke; LATITUDE; LONGITUDE; Physical Oceanography @ AWI; Salinity; Temperature, water; Thermosalinograph; TSG
    Type: Dataset
    Format: text/tab-separated-values, 4298 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-02-16
    Keywords: Attenuation, optical beam transmission; AWI_PhyOce; Calculated; Conductivity; CTD; CTD, SEA-BIRD SBE 911plus, SN 1015; CTD/Rosette; CTD-RO; Date/Time of event; Density, sigma-theta (0); DEPTH, water; Elevation of event 2; Event label; Fluorometer; HE545; HE545_1-1; HE545_11-1; HE545_12-1; HE545_1-3; HE545_13-1; HE545_14-1; HE545_15-1; HE545_16-1; HE545_17-1; HE545_18-1; HE545_18-10; HE545_18-11; HE545_18-12; HE545_18-13; HE545_18-14; HE545_18-15; HE545_18-16; HE545_18-17; HE545_18-18; HE545_18-19; HE545_18-2; HE545_18-21; HE545_18-22; HE545_18-23; HE545_18-24; HE545_18-25; HE545_18-26; HE545_18-27; HE545_18-29; HE545_18-3; HE545_18-30; HE545_18-31; HE545_18-32; HE545_18-33; HE545_18-34; HE545_18-35; HE545_18-36; HE545_18-37; HE545_18-38; HE545_18-39; HE545_18-4; HE545_18-40; HE545_18-41; HE545_18-42; HE545_18-43; HE545_18-5; HE545_18-6; HE545_18-7; HE545_18-8; HE545_18-9; HE545_20-1; HE545_2-1; HE545_21-1; HE545_22-1; HE545_24-2; HE545_25-1; HE545_26-1; HE545_27-1; HE545_29-1; HE545_30-1; HE545_31-1; HE545_32-1; HE545_32-2; HE545_32-3; HE545_32-4; HE545_32-5; HE545_32-6; HE545_32-7; HE545_32-8; HE545_33-1; HE545_33-2; HE545_33-3; HE545_33-4; HE545_33-5; HE545_33-6; HE545_33-7; HE545_33-8; HE545_34-1; HE545_34-2; HE545_34-3; HE545_34-4; HE545_34-5; HE545_34-6; HE545_34-7; HE545_34-8; HE545_35-1; HE545_35-3; HE545_35-4; HE545_35-5; HE545_35-6; HE545_35-7; HE545_35-8; HE545_35-9; HE545_38-1; HE545_40-1; HE545_4-1; HE545_41-1; HE545_42-1; HE545_43-1; HE545_44-1; HE545_45-1; HE545_46-1; HE545_47-1; HE545_48-1; HE545_48-5; HE545_49-1; HE545_49-3; HE545_49-5; HE545_51-1; HE545_52-1; HE545_53-1; HE545_54-1; HE545_54-4; HE545_55-3; HE545_56-1; HE545_57-1; HE545_58-1; HE545_59-1; HE545_60-1; HE545_6-1; HE545_61-1; HE545_63-1; HE545_7-1; HE545_8-1; HE545_9-1; Heincke; Latitude of event; Longitude of event; Number of observations; Oxygen; Oxygen saturation; Physical Oceanography @ AWI; Pressure, water; Salinity; Temperature, water; Temperature, water, potential
    Type: Dataset
    Format: text/tab-separated-values, 98032 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...