GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Ecology Letters, Wiley, Vol. 23, No. 3 ( 2020-03), p. 457-466
    Abstract: Rising sea surface temperatures are expected to lead to the loss of phytoplankton biodiversity. However, we currently understand very little about the interactions between warming, loss of phytoplankton diversity and its impact on the oceans' primary production. We experimentally manipulated the species richness of marine phytoplankton communities under a range of warming scenarios, and found that ecosystem production declined more abruptly with species loss in communities exposed to higher temperatures. Species contributing positively to ecosystem production in the warmed treatments were those that had the highest optimal temperatures for photosynthesis, implying that the synergistic impacts of warming and biodiversity loss on ecosystem functioning were mediated by thermal trait variability. As species were lost from the communities, the probability of taxa remaining that could tolerate warming diminished, resulting in abrupt declines in ecosystem production. Our results highlight the potential for synergistic effects of warming and biodiversity loss on marine primary production.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Ecology and Biogeography, Wiley, Vol. 29, No. 6 ( 2020-06), p. 1008-1019
    Abstract: Biodiversity dynamics comprise evolutionary and ecological changes on multiple temporal scales from millions of years to decades, but they are often interpreted within a single time frame. Planktonic foraminifera communities offer a unique opportunity for analysing the dynamics of marine biodiversity over different temporal scales. Our study aims to provide a baseline for assessments of biodiversity patterns over multiple time‐scales, which is urgently needed to interpret biodiversity responses to increasing anthropogenic pressure. Location Global (26 sites). Time period Five time‐scales: multi‐million‐year (0–7 Myr), million‐year (0–0.5 Myr), multi‐millennial (0–15 thousand years), millennial (0–1,100 years) and decadal (0–32 years). Major taxa studied Planktonic foraminifera. Methods We analysed community composition of planktonic foraminifera at five time‐scales, combining measures of standing diversity (richness and effective number of species, ENS) with measures of temporal community turnover (presence–absence‐based, dominance‐based). Observed biodiversity patterns were compared with the outcome of a neutral model to separate the effects of sampling resolution (the highest in the shortest time series) from biological responses. Results Richness and ENS decreased from multi‐million‐year to millennial time‐scales, but higher standing diversity was observed on the decadal scale. As predicted by the neutral model, turnover in species identity and dominance was strongest at the multi‐million‐year time‐scale and decreased towards the millennial scale. However, contrary to the model predictions, modern time series show rapid decadal variation in the dominance structure of foraminifera communities, which is of comparable magnitude as over much longer time periods. Community turnover was significantly correlated with global temperature change, but not on the shortest time‐scale. Main conclusions Biodiversity patterns can be to some degree predicted from the scaling effects related to different durations of time series, but changes in the dominance structure observed over the last few decades reach higher magnitude, probably forced by anthropogenic effects, than those observed over much longer durations.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Royal Society ; 2020
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 375, No. 1814 ( 2020-12-21), p. 20190452-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 375, No. 1814 ( 2020-12-21), p. 20190452-
    Abstract: Whereas the anthropogenic impact on marine biodiversity is undebated, the quantification and prediction of this change are not trivial. Simple traditional measures of biodiversity (e.g. richness, diversity indices) do not capture the magnitude and direction of changes in species or functional composition. In this paper, we apply recently developed methods for measuring biodiversity turnover to time-series data of four broad taxonomic groups from two coastal regions: the southern North Sea (Germany) and the South African coast. Both areas share geomorphological features and ecosystem types, allowing for a critical assessment of the most informative metrics of biodiversity change across organism groups. We found little evidence for directional trends in univariate metrics of diversity for either the effective number of taxa or the amount of richness change. However, turnover in composition was high (on average nearly 30% of identities when addressing presence or absence of species) and even higher when taking the relative dominance of species into account. This turnover accumulated over time at similar rates across regions and organism groups. We conclude that biodiversity metrics responsive to turnover provide a more accurate reflection of community change relative to conventional metrics (absolute richness or relative abundance) and are spatially broadly applicable. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2020
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-02-11)
    Abstract: Gastrointestinal complications during the neonatal period, i.e. necrotizing enterocolitis (NEC) and spontaneous intestinal perforation (SIP), are associated with adverse short-term outcome in very-low-birthweight infants (VLBWI, 〈 1500 g birth weight). However, little is known about the neurological outcome of survivors at school age. We analysed data of 2241 infants followed-up at the age of 6 years. To determine the effect of NEC and SIP on cognitive outcome in consideration of other important confounding factors, we used multivariable logistic regression models. In addition, infants with surgical diagnosis of NEC (n = 43) or SIP (n = 41) were compared to NEC (n = 43) or SIP (n = 41) negative controls using Mahalanobis distance matching. Infants with a history for NEC had a three times increased risk (RR 3.0 [1.8–4.2], p  〈  0.001) to develop IQ scores 〈 85 while history of surgical SIP did not increase the relative risk for lower IQs at school age (RR 1.0 [0.4–2.1], p = 1.000). In a matched-cohort analysis, we confirmed that infants with surgical NEC had lower mean IQ results than unaffected controls (±SD) (85±17 vs. 94±14, p = 0.023) while no differences were found for history of SIP. Our results reflect that the different aetiology and inflammatory extent of NEC and SIP may lead to disparate neurodevelopment trajectories. Hence, our data suggest a potential role of early gut-brain axis distortion in infants with NEC which needs to be further explored.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Nature Ecology & Evolution Vol. 4, No. 11 ( 2020-08-17), p. 1502-1509
    In: Nature Ecology & Evolution, Springer Science and Business Media LLC, Vol. 4, No. 11 ( 2020-08-17), p. 1502-1509
    Type of Medium: Online Resource
    ISSN: 2397-334X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2879715-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Marine Biology Vol. 167, No. 3 ( 2020-03)
    In: Marine Biology, Springer Science and Business Media LLC, Vol. 167, No. 3 ( 2020-03)
    Type of Medium: Online Resource
    ISSN: 0025-3162 , 1432-1793
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1117-4
    detail.hit.zdb_id: 1459413-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Ecology Letters Vol. 23, No. 3 ( 2020-03), p. 575-585
    In: Ecology Letters, Wiley, Vol. 23, No. 3 ( 2020-03), p. 575-585
    Abstract: Most ecosystems are affected by anthropogenic or natural pulse disturbances, which alter the community composition and functioning for a limited period of time. Whether and how quickly communities recover from such pulses is central to our understanding of biodiversity dynamics and ecosystem organisation, but also to nature conservation and management. Here, we present a meta‐analysis of 508 (semi‐)natural field experiments globally distributed across marine, terrestrial and freshwater ecosystems. We found recovery to be significant yet incomplete. At the end of the experiments, disturbed treatments resembled controls again when considering abundance (94%), biomass (82%), and univariate diversity measures (88%). Most disturbed treatments did not further depart from control after the pulse, indicating that few studies showed novel trajectories induced by the pulse. Only multivariate community composition on average showed little recovery: disturbed species composition remained dissimilar to the control throughout most experiments. Still, when experiments revealed a higher compositional stability, they tended to also show higher functional stability. Recovery was more complete when systems had high resistance, whereas resilience and resistance were negatively correlated. The overall results were highly consistent across studies, but significant differences between ecosystems and organism groups appeared. Future research on disturbances should aim to understand these differences, but also fill obvious gaps in the empirical assessments for regions (especially the tropics), ecosystems and organisms. In summary, we provide general evidence that (semi‐)natural communities can recover from pulse disturbances, but compositional aspects are more vulnerable to long‐lasting effects of pulse disturbance than the emergent functions associated to them.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Ecology Letters Vol. 23, No. 1 ( 2020-01), p. 16-32
    In: Ecology Letters, Wiley, Vol. 23, No. 1 ( 2020-01), p. 16-32
    Abstract: Research on the ecological and evolutionary roles of phytochemicals has recently progressed from studying single compounds to examining chemical diversity itself. A key conceptual advance enabling this progression is the use of species diversity metrics for quantifying phytochemical diversity. In this perspective, we extend the theory developed for species diversity to further our understanding of what exactly phytochemical diversity is and how its many dimensions impact ecological and evolutionary processes. First, we discuss the major dimensions of phytochemical diversity – richness, evenness, functional diversity, and alpha, gamma and beta diversity. We describe their potential independent roles in biotic interactions and the practical challenges associated with their analysis. Second, we re‐analyse the published and unpublished datasets to reveal that the phytochemical diversity experienced by an organism (or observed by a researcher) depends strongly on the scale of the interaction and the total amount of phytochemicals involved. We argue that we must account for these frames of reference to meaningfully understand diversity. Moving from a general notion of phytochemical diversity as a single measure to a precise definition of its multidimensional and multiscale nature yields overlooked testable predictions that will facilitate novel insights about the evolutionary ecology of plant biotic interactions.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    The Royal Society ; 2020
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 375, No. 1814 ( 2020-12-21), p. 20190444-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 375, No. 1814 ( 2020-12-21), p. 20190444-
    Abstract: Whereas the conservation and management of biodiversity has become a key issue in environmental sciences and policy in general, the conservation of marine biodiversity faces additional challenges such as the challenges of accessing field sites (e.g. polar, deep sea), knowledge gaps regarding biodiversity trends, high mobility of many organisms in fluid environments, and ecosystem-specific obstacles to stakeholder engagement and governance. This issue comprises contributions from a diverse international group of scientists in a benchmarking volume for a common research agenda on marine conservation. We begin by addressing information gaps on marine biodiversity trends through novel approaches and technologies, then linking such information to ecosystem functioning through a focus on traits. We then leverage the knowledge of these relationships to inform theory aiming at predicting the future composition and functioning of marine communities. Finally, we elucidate the linkages between marine ecosystems and human societies by examining economic, management and governance approaches that contribute to effective marine conservation in practice. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2020
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Experimental Marine Biology and Ecology, Elsevier BV, Vol. 523 ( 2020-02), p. 151268-
    Type of Medium: Online Resource
    ISSN: 0022-0981
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 410283-6
    detail.hit.zdb_id: 1483103-X
    SSG: 12
    SSG: 7,20
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...