GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Limnology and Oceanography, Wiley, Vol. 65, No. 7 ( 2020-07), p. 1456-1470
    Abstract: Coastal physical processes are essential for the cross‐shore transport of meroplanktonic larvae to their benthic adult habitats. To investigate these processes, we released a swarm of novel, trackable, subsurface vehicles, the Mini‐Autonomous Underwater Explorers (M‐AUEs), which we programmed to mimic larval depth‐keeping behavior. The M‐AUE swarm measured a sudden net onshore transport of 30–70 m over 15–20 min, which we investigated in detail. Here, we describe a novel transport mechanism of depth‐keeping plankton revealed by these observations. In situ measurements and models showed that, as a weakly nonlinear internal wave propagated through the swarm, it deformed surface‐intensified, along‐isopycnal background velocities downward, accelerating depth‐keeping organisms onshore. These higher velocities increased both the depth‐keepers' residence time in the wave and total cross‐shore displacement, leading to wave‐induced transports twice those of fully Lagrangian organisms and four times those associated with the unperturbed background currents. Our analyses also show that integrating velocity time series from virtual larvae or mimics moving with the flow yields both larger and more accurate transport estimates than integrating velocity time series obtained at a point (Eulerian). The increased cross‐shore transport of organisms capable of vertical swimming in this wave/background‐current system is mathematically analogous to the increase in onshore transport associated with horizontal swimming in highly nonlinear internal waves. However, the mechanism described here requires much weaker swimming speeds (mm s −1 vs. cm s −1 ) to achieve significant onshore transports, and meroplanktonic larvae only need to orient themselves vertically, not horizontally.
    Type of Medium: Online Resource
    ISSN: 0024-3590 , 1939-5590
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2020
    In:  Frontiers in Marine Science Vol. 7 ( 2020-7-28)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 7 ( 2020-7-28)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Limnology and Oceanography, Wiley, Vol. 65, No. 10 ( 2020-10), p. 2515-2528
    Abstract: Many aquatic microbes form colonies, yet little is known about their abundance and fitness relative to single‐celled taxa. The formation of diatom chains, in particular, has implications for diatom growth, survival, and carbon transfer. Here, we utilize an autonomous underwater microscope, combined with traditional microscopy, to develop a novel, multiyear record of the abundance of single‐cell and colony‐forming diatoms at Scripps Pier, a coastal location in the Southern California Bight. The total abundance of diatoms was lower during the warmer and more stratified conditions from 2015 to early 2016, but increased in cooler and less stratified conditions in mid‐2016 to late 2017. Diatom blooms were dominated by chain‐forming taxa, whereas solitary diatoms prevailed during low‐biomass conditions. The abundance of dinoflagellates, some of which are important diatom predators, is highest when colonies (chains) are most abundant. These observations of the diatom assemblage are consistent with a trade‐off between resource acquisition and predator defenses. Solitary diatom cells dominated during conditions with weak nutrient supply because they have a greater diffusive catchment area per cell in comparison to cells living in colonies. In contrast, during bloom conditions when nutrient supply is high and predators are abundant, forming a colony may reduce predation losses to quickly growing microzooplankton predators, and afford chains a higher fitness despite the costs of sharing resources with neighboring cells. These results highlight the contrasting ecology of single‐cell and chain‐forming diatoms, and the need to differentiate them in monitoring campaigns and ecological models.
    Type of Medium: Online Resource
    ISSN: 0024-3590 , 1939-5590
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Limnology and Oceanography: Methods, Wiley, Vol. 18, No. 11 ( 2020-11), p. 681-695
    Abstract: The large data sets provided by in situ optical microscopes are allowing us to answer longstanding questions about the dynamics of planktonic ecosystems. To deal with the influx of information, while facilitating ecological insights, the design of these instruments increasingly must consider the data: storage standards, human annotation, and automated classification. In that context, we detail the design of the Scripps Plankton Camera (SPC) system, an in situ microscopic imaging system. Broadly speaking, the SPC consists of three units: (1) an underwater, free‐space, dark‐field imaging microscope; (2) a server‐based management system for data storage and analysis; and (3) a web‐based user interface for real‐time data browsing and annotation. Combined, these components facilitate observations and insights into the diverse planktonic ecosystem. Here, we detail the basic design of the SPC and briefly present several preliminary, machine‐learning‐enabled studies illustrating its utility and efficacy.
    Type of Medium: Online Resource
    ISSN: 1541-5856 , 1541-5856
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2161715-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2020
    In:  Journal of Fluid Mechanics Vol. 892 ( 2020-06-10)
    In: Journal of Fluid Mechanics, Cambridge University Press (CUP), Vol. 892 ( 2020-06-10)
    Abstract: A sphere sinking through a chemical gradient drags fluid with it, deforming the gradient. The sphere leaves a trail of gradient enhancement that persists longer than the velocity disturbance in the Reynolds $10^{-2}\leqslant Re\leqslant 10^{2}$ , Froude $10^{-1}\leqslant Fr\leqslant 10^{3}$ and Péclet $10^{2}〈Pe\leqslant 10^{6}$ regime considered here. We quantify the enhancement of the gradient and the diffusive flux in the trail of disturbed chemical left by the passing sphere using a combination of numerical simulations and scaling analyses. When $Fr$ is large and buoyancy forces are negligible, dragged isosurfaces of chemical form a boundary layer of thickness $\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D70C}}$ around the sphere with diameter $l$ . We derive the scaling $\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D70C}}/l\sim \mathit{Pe}^{-1/3}$ from the balance of advection and diffusion in the chemical boundary layer. The sphere displaces a single isosurface of chemical a maximum distance $\mathit{L}_{Def}$ that increases as $\mathit{L}_{Def}/l\sim l/\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D70C}}\sim \mathit{Pe}^{1/3}$ . Increased flux through the chemical boundary layer moving with the sphere is described by a Sherwood number, $Sh\sim l/\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D70C}}\sim \mathit{Pe}^{1/3}$ . The gradient enhancement trail extends much farther than $\mathit{L}_{Def}$ as displaced isosurfaces slowly return to their original positions through diffusion. In the reference frame of a chemical isosurface moving past the sphere, a new quantity describing the Lagrangian flux is found to scale as $\mathit{M}\sim (\mathit{L}_{Def}/l)^{2}\sim \mathit{Pe}^{2/3}$ . The greater $\mathit{Pe}$ dependence of $\mathit{M}$ versus $Sh$ demonstrates the importance of the deformation trail for determining the total flux of chemical in the system. For $\mathit{Fr}\geqslant 10$ , buoyancy forces are weak compared to the motion of the sphere and the preceding results are retained. Below $\mathit{Fr}=10$ , an additional Froude dependence is found and $l/\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D70C}}\sim Sh\sim Re^{1/6}Fr^{-1/6}Pe^{1/3}$ . Buoyancy forces suppress gradient deformation downstream, resulting in $\mathit{L}_{Def}/l\sim Re^{-1/3}Fr^{1/3}Pe^{1/3}$ and $\mathit{M}\sim Re^{-1/3}Fr^{1/3}Pe^{2/3}$ . The productivity of marine plankton – and therefore global carbon and oxygen cycles – depends on the availability of microscale gradients of chemicals. Because most plankton exist in the fluids regime under consideration, this work describes a new mechanism by which sinking particles and plankton can stir weak ambient chemical gradients a distance $\mathit{L}_{Def}$ and increase chemical flux in the trail by a factor of  $\mathit{M}$ .
    Type of Medium: Online Resource
    ISSN: 0022-1120 , 1469-7645
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1472346-3
    detail.hit.zdb_id: 218334-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Limnology and Oceanography, Wiley, Vol. 65, No. 6 ( 2020-06), p. 1286-1296
    Abstract: The meroplanktonic larvae of many invertebrate and vertebrate species rely on physical transport to move them across the shelf to their adult habitats. One potential mechanism for cross‐shore larval transport is Stokes drift in internal waves. Here, we develop theory to quantify the Stokes velocities of neutrally buoyant and depth‐keeping organisms in linear internal waves in shallow water. We apply the analyses to theoretical and measured internal wave fields, and compare results with a numerical model. Near the surface and bottom boundaries, both neutrally buoyant and depth‐keeping organisms were transported in the direction of the wave's phase propagation. However, neutrally buoyant organisms were transported in the opposite direction of the wave's phase at mid depths, while depth‐keeping organisms had zero net transport there. Weakly depth‐keeping organisms had Stokes drifts between the perfectly depth‐keeping and neutrally buoyant organisms. For reasonable wave amplitudes and phase speeds, organisms would experience horizontal Stokes speeds of several centimeters per second—or a few kilometers per day in a constant wave field. With onshore‐polarized internal waves, Stokes drift in internal waves presents a predictable mechanism for onshore transport of meroplanktonic larvae and other organisms near the surface, and offshore transport at mid depths.
    Type of Medium: Online Resource
    ISSN: 0024-3590 , 1939-5590
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Limnology and Oceanography: Methods Vol. 18, No. 12 ( 2020-12), p. 707-716
    In: Limnology and Oceanography: Methods, Wiley, Vol. 18, No. 12 ( 2020-12), p. 707-716
    Abstract: Sinking particles and swimming plankton may deform ambient chemical gradients, leaving long trails of chemical disturbance that dissipate on a diffusive timescale. Imaging this phenomenon in a laboratory setting requires a large field of view, a broad depth of field, and a passive chemical substance that does not influence the hydrodynamics. These requirements obviate the use of traditional schlieren optical systems, which rely on density stratification and their consequent buoyancy forces, and modern planar laser‐induced fluorescence, which has a narrow depth of field. Further, the light used to induce plankton movement must be kept separate from the recorded signal. Here, we describe a new ultraviolet “dyegraph” technique that quantifies dye disturbance caused by sinking spheres and swimming zooplankton. An experimental tank is filled with seawater and a gradient of an ultraviolet‐absorbing pigment. Using modified shadowgraph optics, ultraviolet light spreads from a pinhole to a collimating lens, passes through the tank to a telecentric lens, and is recorded by a camera fitted with an ultraviolet bandpass filter. The dye is transparent in visible light but appears dark in the imaging system. The 3D chemical disturbance is reconstructed from images using tomographic inversion. After outlining the method, we present examples of chemical deformation trails generated by sinking spheres and live, swimming copepods.
    Type of Medium: Online Resource
    ISSN: 1541-5856 , 1541-5856
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2161715-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Scientific Reports Vol. 10, No. 1 ( 2020-05-07)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-05-07)
    Abstract: Blue whales need to time their migration from their breeding grounds to their feeding grounds to avoid missing peak prey abundances, but the cues they use for this are unknown. We examine migration timing (inferred from the local onset and cessation of blue whale calls recorded on seafloor-mounted hydrophones), environmental conditions (e.g., sea surface temperature anomalies and chlorophyll a ), and prey (spring krill biomass from annual net tow surveys) during a 10 year period (2008–2017) in waters of the Southern California Region where blue whales feed in the summer. Colder sea surface temperature anomalies the previous season were correlated with greater krill biomass the following year, and earlier arrival by blue whales. Our results demonstrate a plastic response of blue whales to interannual variability and the importance of krill as a driving force behind migration timing. A decadal-scale increase in temperature due to climate change has led to blue whales extending their overall time in Southern California. By the end of our 10-year study, whales were arriving at the feeding grounds more than one month earlier, while their departure date did not change. Conservation strategies will need to account for increased anthropogenic threats resulting from longer times at the feeding grounds.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 52, No. 12 ( 2020-12), p. 1314-1332
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Diabetes, American Diabetes Association, Vol. 69, No. 1 ( 2020-01-01), p. 112-120
    Abstract: Coronary artery disease (CAD) is more frequent among individuals with dysglycemia. Preventive interventions for diabetes can improve cardiometabolic risk factors (CRFs), but it is unclear whether the benefits on CRFs are similar for individuals at different genetic risk for CAD. We built a 201-variant polygenic risk score (PRS) for CAD and tested for interaction with diabetes prevention strategies on 1-year changes in CRFs in 2,658 Diabetes Prevention Program (DPP) participants. We also examined whether separate lifestyle behaviors interact with PRS and affect changes in CRFs in each intervention group. Participants in both the lifestyle and metformin interventions had greater improvement in the majority of recognized CRFs compared with placebo (P & lt; 0.001) irrespective of CAD genetic risk (Pinteraction & gt; 0.05). We detected nominal significant interactions between PRS and dietary quality and physical activity on 1-year change in BMI, fasting glucose, triglycerides, and HDL cholesterol in individuals randomized to metformin or placebo, but none of them achieved the multiple-testing correction for significance. This study confirms that diabetes preventive interventions improve CRFs regardless of CAD genetic risk and delivers hypothesis-generating data on the varying benefit of increasing physical activity and improving diet on intermediate cardiovascular risk factors depending on individual CAD genetic risk profile.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2020
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...