GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (1,925)
  • PANGAEA  (1,925)
Document type
  • Data  (1,925)
Source
Keywords
Publisher
  • PANGAEA  (1,925)
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Scripps Institution of Oceanography, UC San Diego
    Publication Date: 2024-07-19
    Description: 59 box and gravity cores from the MANOP cruise with RV KNORR in 1979 were described and alaysed.
    Type: dataset publication series
    Format: application/zip, 59 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Drury, Anna Joy; Lee, Geoffrey P; Gray, William Robert; Lyle, Mitchell W; Westerhold, Thomas; Shevenell, Amelia E; John, Cédric M (2018): Deciphering the state of the late Miocene to early Pliocene equatorial Pacific. Paleoceanography and Paleoclimatology, 33, 246-263, https://doi.org/10.1002/2017PA003245
    Publication Date: 2024-07-19
    Description: The late Miocene-early Pliocene was a time of global cooling and the development of modern meridional thermal gradients. Equatorial Pacific sea surface conditions potentially played an important role in this global climate transition, but their evolution is poorly understood. Here, we present the first continuous late Miocene-early Pliocene (8.0-4.4 Ma) planktic foraminiferal stable isotope records from eastern equatorial Pacific Integrated Ocean Drilling Program Site U1338, with a new astrochronology spanning 8.0-3.5 Ma. Mg/Ca analyses on surface dwelling foraminifera Trilobatus sacculifer from carefully selected samples suggest mean sea-surface-temperatures (SSTs) are ~27.8±1.1°C (1 Sigma) between 6.4-5.5 Ma. The planktic foraminiferal d18O record implies a 2°C cooling between 7.2-6.1 Ma and an up to 3°C warming between 6.1-4.4 Ma, consistent with observed tropical alkenone paleo-SSTs. Diverging fine-fraction-to-foraminiferal d13C gradients likely suggest increased upwelling from 7.1-6.0 and 5.8-4.6 Ma, concurrent with the globally recognized late Miocene Biogenic Bloom. This study shows that both warm and asymmetric mean states occurred in the equatorial Pacific during the late Miocene-early Pliocene. Between 8.0-6.5 and 5.2-4.4 Ma, low east-west d18O and SST gradients and generally warm conditions prevailed. However, an asymmetric mean climate state developed between 6.5-5.7 Ma, with larger east-west d18O and SST gradients and eastern equatorial Pacific cooling. The asymmetric mean state suggests stronger trade winds developed, driven by increased meridional thermal gradients associated with global cooling and declining atmospheric pCO2 concentrations. These oscillations in equatorial Pacific mean state are reinforced by Antarctic cryosphere expansion and related changes in oceanic gateways (e.g., Central American Seaway/Indonesian Throughflow restriction).
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: dataset publication series
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hahn, Annette; Bowen, P D; Clift, D K; Kulhanek, M W; Lyle, Mitchell W (2019): Testing the analytical performance of handheld XRF using marine sediments of IODP Expedition 355. Geological Magazine, 1-5, https://doi.org/10.1017/S0016756819000189
    Publication Date: 2024-07-19
    Description: Obtaining geochemical profiles using X-ray fluorescent (XRF) techniques has become a standard procedure in many sediment core studies. The resulting datasets are not only important tools for palaeoclimatic and palaeoceanographic reconstructions, but also for stratigraphic correlation. The International Ocean Discovery Program (IODP) has therefore recently introduced shipboard application of a handheld XRF device, making geochemical data directly available to the science party. In all XRF scanning techniques, the physical properties of wet core halves cause substantial analytical deviations. In order to obtain estimates of element concentrations (e.g. for quantitative analyses of fluxes or mass-balance calculations), a calibration of the scanning data is required. We test whether results from the handheld XRF analysis on discrete samples are suitable for calibrating scanning data. Log-ratios with Ca as a common denominator were calculated. The comparison between the handheld device and conventional measurements show that the latter provide high-quality data describing Al, Si, K, Ca, Ti, Mn, Fe, Zn, Rb and Sr content (R2 compared with conventional measurements: ln(Al/Ca) = 0.99, ln(Si/Ca) = 0.98, ln(K/Ca) = 0.99, ln(Ti/Ca) = 0.99, ln(Mn/Ca) = 0.99, ln(Fe/Ca) = 0.99, ln(Zn/Ca) = 0.99 and ln(Sr/Ca) = 0.99). Our results imply that discrete measurements using the shipboard handheld analyser are suitable for the calibration of XRF scanning data. Our test was performed on downcore sediments from IODP Expedition 355 that display a wide variety of lithologies of both terrestrial and marine origin. The implication is that our findings are valid on a general scale and that shipboard handheld XRF analysis on discrete samples should be used for calibrating XRF scanning data.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: dataset publication series
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Drury, Anna Joy; Westerhold, Thomas; Frederichs, Thomas; Tian, Jun; Wilkens, Roy H; Channell, James E T; Evans, Helen F; John, Cédric M; Lyle, Mitchell W; Röhl, Ursula (2017): Late Miocene climate and time scale reconciliation: accurate orbital calibration from a deep-sea perspective. Earth and Planetary Science Letters, 475, 254-266, https://doi.org/10.1016/j.epsl.2017.07.038
    Publication Date: 2024-07-19
    Description: Accurate age control of the late Tortonian to early Messinian (8.3-6.0 Ma) is essential to ascertain the origin of benthic foraminiferal d18O trends and the late Miocene carbon isotope shift (LMCIS), and to examine temporal relationships between the deep-sea, terrasphere and cryosphere. The current Tortonian-Messinian Geological Time Scale (GTS2012) is based on astronomically calibrated Mediterranean sections; however, no comparable non-Mediterranean stratigraphies exist for 8-6 Ma suitable for testing the GTS2012. Here, we present the first high-resolution, astronomically tuned benthic stable isotope stratigraphy (1.5 kyr resolution) and magnetostratigraphy from a single deep-sea location (IODP Site U1337, equatorial Pacific Ocean), which provides unprecedented insight into climate evolution from 8.3-6.0 Ma. The astronomically calibrated magnetostratigraphy provides robust ages, which differ by 2-50 kyr relative to the GTS2012 for polarity Chrons C3An.1n to C4r.1r, and eliminates the exceptionally high South Atlantic spreading rates based on the GTS2012 during Chron C3Bn. We show that the LMCIS was globally synchronous within 2 kyr, and provide astronomically calibrated ages anchored to the GPTS for its onset (7.537 Ma; 50% from base Chron C4n.1n) and termination (6.727 Ma; 11% from base Chron C3An.2n), confirming that the terrestrial C3:C4 shift could not have driven the LMCIS. The benthic records show that the transition into the 41-kyr world, when obliquity strongly influenced climate variability, already occurred at 7.7 Ma and further strengthened at 6.4 Ma. Previously unseen, distinctive, asymmetric saw-tooth patterns in benthic d18O imply that high-latitude forcing played an important role in late Miocene climate dynamics from 7.7-6.9 Ma. This new integrated deep-sea stratigraphy from Site U1337 can act as a new stable isotope and magnetic polarity reference section for the 8.3-6.0 Ma interval.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: dataset publication series
    Format: application/zip, 14 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lyle, Mitchell W; Drury, Anna Joy; Tian, Jun; Wilkens, Roy H; Westerhold, Thomas (2019): Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity. Climate of the Past, 15(5), 1715-1739, https://doi.org/10.5194/cp-15-1715-2019
    Publication Date: 2024-07-19
    Description: Coherent variation of CaCO3 burial is a feature of the Cenozoic eastern equatorial Pacific. Nevertheless, there has been a long-standing ambiguity whether changes in CaCO3 dissolution or changes in equatorial primary production might cause the variability. Since productivity and dissolution leave distinctive regional signals, a regional synthesis of data using updated age models and high-resolution stratigraphic correlation is an important constraint to distinguish between dissolution and production as factors that cause low CaCO3. Furthermore the new chronostratigraphy is an important foundation for future paleoceanographic studies. The ability to distinguish between primary production and dissolution is also important to establish a regional carbonate compensation depth (CCD). We report late Miocene to recent time series of X-ray Fluorescence (XRF) derived bulk sediment composition and mass accumulation rates (MAR) from eastern equatorial Pacific Integrated Ocean Drilling Program (IODP) Sites U1335, U1337, U1338 and Ocean Drilling Program (ODP) Site 849, and also report bulk density derived CaCO3 MAR at ODP Sites 848, 850 and 851. We use physical properties, XRF bulk chemical scans, and images along with available chronostratrigraphy to inter-correlate records in depth space. We then apply a new equatorial Pacific age model to create correlated age records for the last 8 Myr with resolutions of 1-2 kyr. Large magnitude changes in CaCO3 and bio-SiO2 (biogenic opal) MAR occurred within that time period but clay deposition has remained relatively constant, indicating that changes in Fe deposition from dust is only a secondary feedback to equatorial productivity. Because clay deposition is relatively constant, ratios of CaCO3 % or biogenic SiO2 % to clay emulate changes of biogenic MAR. We define 5 major Plio-Pleistocene Low CaCO3 % (PPLC) intervals since 5.3 Ma. Two were caused primarily by high bio-SiO2 burial that diluted CaCO3 (PPLC-2—1685-2135 ka, and PPLC-5—4465-4737 ka), while 3 were caused by enhanced dissolution of CaCO3 (PPLC-1—51-402 ka, PPLC-3—2248-2684 ka, and PPLC-4—2915-4093 ka). Regional patterns of CaCO3 % minima can distinguish between low CaCO3 caused by high diatom bio-SiO2 dilution versus lows caused by high CaCO3 dissolution. CaCO3 dissolution can be confirmed through scanning XRF measurements of Ba. High diatom production causes lowest CaCO3 % within the equatorial high productivity zone, while higher dissolution causes lowest CaCO3 at higher latitudes where CaCO3 production is lower. The two diatom production intervals, PPLC-2 and PPLC-5, have different geographic footprints from each other because of regional changes in eastern Pacific nutrient storage after the closure of the Panama Seaway. Because of the regional variability in carbonate production and sedimentation, the carbonate compensation depth (CCD) approach is only useful to examine large changes in CaCO3 dissolution. Tables SM-1 to SM-7: splice tables used for the 7 ODP and IODP drill sites in this study Tables SM-8 to SM-13: Chronostratigraphic depth ties among the drill sites. Tables SM-14 to SM-17: Age models for each drill site and age-depth ties at each site. Tables SM-18 to SM-23: scanning XRF data for 4 drill sites, and opal calibration data for Site 849 Tables SM-24 to SM-27: CaCO3 % estimated from Gamma Ray measured density for ODP Sites 848, 849, 850, and 851 Tables SM-28 to SM-34: Mass Accumulation Rates (MAR) for the 7 drill sites Tables SM-35 to SM-37: calculations of CCD from CaCO3 MAR
    Keywords: CaCO3 burial; Eastern Equatorial Pacific; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Ocean Drilling Program; ODP; Pleistocene; Pliocene
    Type: dataset publication series
    Format: application/zip, 51 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-07-19
    Description: These are the supplementary datasets for the manuscript: Drury, A.J., Liebrand, D., Westerhold, T., Beddow, H., Hodell, D., Rohlfs, N., Wilkens, R.H., Lourens, L., 'History of South Atlantic carbonate deposition since the Oligocene (30-0 Ma)', in final preparation for submission Climate of the Past
    Keywords: Carbonate; IODP; Miocene; Ocean Drilling; Ocean Drilling Program; ODP; ODP Site 1264; ODP Site 1265; Oligocene; Pleistocene; Pliocene; South Atlantic
    Type: dataset publication series
    Format: application/zip, 25 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lyle, Mitchell W; Zahn, Rainer; Prahl, Frederick G; Dymond, Jack R; Collier, Robert W; Pisias, Nicklas G; Suess, Erwin (1992): Paleoproductivity and carbon burial across the California current: the multitracer transect 42°N. Paleoceanography, 7(3), 251-272, https://doi.org/10.1029/92PA00696
    Publication Date: 2024-07-19
    Description: The Multitracers Experiment studied a transect of water column, sediment trap, and sediment data taken across the California Current to develop quantitative methods for hindcasting paleoproductivity. The experiment used three sediment trap moorings located 120 km, 270 km, and 630 km from shore at the Oregon/California border in North America. We report here about the sedimentation and burial of particulate organic carbon (Corg) and CaCO3. In order to observe how the integrated CaCO3 and Corg burial across the transect has changed since the last glacial maximum, we have correlated core from the three sites using time scales constrained by both radiocarbon and oxygen isotopes. By comparing surface sediments to a two-and-a-half year sediment trap record, we have also defined the modern preservation rates for many of the labile sedimentary materials. Our analysis of the Corg data indicates that significant amounts (20-40%) of the total Corg being buried today in surface sediments is terrestrial. At the last glacial maximum, the terrestrial Corg fraction within 300 km of the coast was about twice as large. Such large fluxes of terrestrial Corg obscure the marine Corg record, which can be interpreted as productivity. When we corrected for the terrestrial organic matter, we found that the mass accumulation rate of marine Corg roughly doubled from the glacial maximum to the present. Because preservation rates of organic carbon are high in the high sedimentation rate cores, corrections for degradation are straightforward and we can be confident that organic carbon rain rate (new productivity) also doubled. As confirmation, the highest burial fluxes of other biogenic components (opal and Ba) also occur in the Holocene. Productivity off Oregon has thus increased dramatically since the last glacial maximum. CaCO3 fluxes also changed radically through the deglaciation; however, they are linked not to CaCO3 production but rather to changes in deepwater carbonate chemistry between 18 Ka and now.
    Keywords: Lamont-Doherty Earth Observatory, Columbia University; LDEO; PC; Piston corer; TC; Trigger corer; W8709A; W8709A-1; W8709A-13; W8709A-13TC; W8709A-8; W8709A-8TC; Wecoma
    Type: dataset publication series
    Format: application/zip, 12 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Holbourn, Ann E; Kuhnt, Wolfgang; Lyle, Mitchell W; Schneider, Leah; Romero, Oscar E; Andersen, Nils (2014): Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology, 42(1), 19-22, https://doi.org/10.1130/G34890.1
    Publication Date: 2024-07-19
    Description: During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.
    Keywords: 321-U1338; COMPCORE; Composite Core; Exp321; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Pacific Equatorial Age Transect II / Juan de Fuca
    Type: dataset publication series
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kochhann, Karlos Guilherme Diemer; Holbourn, Ann E; Kuhnt, Wolfgang; Channell, James E T; Lyle, Mitchell W; Shackford, Julia K; Wilkens, Roy H; Andersen, Nils (2016): Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum. Paleoceanography, 31(9), 1176-1192, https://doi.org/10.1002/2016PA002988
    Publication Date: 2024-07-19
    Description: The Miocene Climatic Optimum (MCO; ~16.9 to 14.7 Ma) provides an outstanding opportunity to investigate climate-carbon cycle dynamics during a geologically recent interval of global warmth. We present benthic stable oxygen (d18O) and carbon (d13C) isotope records (5-12 kyr time resolution) spanning the late early to middle Miocene interval (18 to 13 Ma) at Integrated Ocean Drilling Program (IODP) Site U1335 (eastern equatorial Pacific Ocean). The U1335 stable isotope series track the onset and development of the MCO as well as the transitional climatic phase culminating with global cooling and expansion of the East Antarctic ice-sheet at ~13.8 Ma. We integrate these new data with published stable isotope, geomagnetic polarity and X-ray fluorescence (XRF) scanner-derived carbonate records from IODP Sites U1335, U1336, U1337 and U1338 on a consistent, astronomically-tuned timescale. Benthic isotope and XRF scanner-derived CaCO3 records depict prominent 100 kyr variability with 400 kyr cyclicity additionally imprinted on d13C and CaCO3 records, pointing to a tight coupling between the marine carbon cycle and climate variations. Our inter-site comparison further indicates that the lysocline behaved in highly dynamic manner throughout the MCO, with 〉75% carbonate loss occurring at paleo-depths ranging from ~3.4 to ~4 km in the eastern equatorial Pacific Ocean. Carbonate dissolution maxima coincide with warm phases (d18O minima) and d13C decreases, implying that climate-carbon cycle feedbacks fundamentally differed from the late Pleistocene glacial-interglacial pattern, where dissolution maxima correspond to d13C maxima and d18O minima. Carbonate dissolution cycles during the MCO were, thus, more similar to Paleogene hyperthermal patterns.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: dataset publication series
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wilkens, Roy H; Westerhold, Thomas; Drury, Anna Joy; Lyle, Mitchell W; Gorgas, T J; Tian, Jun (2017): Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma. Climate of the Past, 13(7), 779-793, https://doi.org/10.5194/cp-13-779-2017
    Publication Date: 2024-07-19
    Description: These files contain individual core images generated from core box photos using the Code for Ocean Drilling Data (CODD) software set. There are PNG images with mcd depth scales attached for use in graphics programs as well as scaled Igor binary images for use with CODD. MCD depths are from the offsets.
    Keywords: Ocean Drilling Program; ODP
    Type: dataset publication series
    Format: application/zip, 50 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...