GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (4)
  • 2019  (4)
Document type
Language
Years
  • 2015-2019  (4)
Year
  • 1
    Publication Date: 2023-01-10
    Description: As part of the TIPAGE (TIen shan – PAmir GEodynamic program) project, passive seismological observations were made along an approximately N-S profile crossing the Pamir seismic zone for about one year. From these observations guided waves were recognized. These guided waves occur as a single, continuous, secondary, compressional (P) wave phase behind the first P-wave arrivals. An equivalent phase in the shear (S) wavefield is hardly recognizable. Modelling of the phase shows that an approximately 10 km thick low velocity zone (LVZ) between the Moho and about 160 km depth reproduces the guided waves as a single, continuous phase much better than a 15–20 km thick LVZ. Modelling of the arrival times of the guided waves reveals that a model with a P-wave velocity of 6.3 km/s above about 100 km depth, and a velocity of 7.6 km/s between this depth and the deep cluster of earthquakes at about 150 km depth provides the best fit to the observed travel-time data. One plausible way to explain the low velocity of 6.3 km/s is to invoke the presence of melts in the LVZ. Then, taking a velocity of 6.9 km/s for the lower crust being subducted, about 10–13% melt is required to obtain a velocity of about 6.3 km/s in the LVZ between the Moho and about 100 km depth. This would be in keeping with the estimated burial depths from xenoliths of Gondwana terrane affinity brought to the surface in the southeastern Pamir around 11 million yr. ago. The present-day LVZ is interpreted to comprise continental lower crust. Although guided waves are known to exist associated with subducted oceanic crust or fault zones, this is the first time to the knowledge of the authors that guided waves have been observed resulting from a LVZ associated with subducted continental lower crust.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-24
    Description: We studied the crustal structure and tectonics in the north Tibetan Plateau from the Songpan-Ganzi terrane to the Qaidam Basin using teleseismic receiver-function imaging, across a major lithospheric boundary, the Kunlun- Qaidam boundary, where previous studies suggest a ~15–20-km change in crustal thickness from thicker crust in the Kunlun Mountains to thinner crust in the Qaidam Basin. We report P receiver functions for 70 stations, largely the International Deep Profiling of Tibet and the Himalaya (INDEPTH), phase IV, experiment. Our most dense station coverage is located along the roughly north-south INDEPTH-IV active-source seismic profile at approximately 95° E longitude. Azimuthal and geographical changes in the receiver functions reveal significant changes in crustal structure and Vp/Vs from across the study area. Receiver functions show strong converters that we interpret as the Moho at ~70 km depth beneath the Qiangtang, Songpan-Ganzi terranes and Kunlun Mountains and at ~50 km depth beneath the central Qaidam Basin. This large change in crustal thickness occurs〉 50 km north of the North Kunlun strike-slip fault, on which the 2001 M8.1 Kunlun earthquake occurred. Receiver functions for some of the stations north of the thickness change at the Kunlun-Qaidam boundary also show a deeper ~70-km bright converter in addition to the 50-km converter. The two converters appear to overlap by up to ~30 km in some locations along the south Qaidam Basin. We combine previous results with these new results to discuss implications for mechanisms for crustal thickening in the north Tibetan Plateau including crustal flow and crustal injection. At depths imaged here, shallower than ~100 km, we see no evidence of southward subduction of Eurasian lithosphere.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-13
    Description: A series of conjugate strike‐slip faults is the most prominent geologic feature in central Tibet and is considered to accommodate east‐west extension and coeval north‐south contraction. The development mechanism of the conjugate strike‐slip fault system is under debate because of unclear crustal physical properties and compositional variations. P and S wave arrivals from 414 local earthquakes recorded by the temporary Seismic Array Integrated Detection for a Window of Indian Continental Head array and the permanent China National Seismic Network were used for the velocity tomography, with additional P and S wave arrivals from 12 shots of the International Deep Profiling of Tibet and the Himalaya III reflection/refraction profile. The local earthquakes were simultaneously relocated with the updated velocity models. We also inverted for a three‐dimensional upper crustal Qp model with the same earthquake data set. The Vp structure near the surface shows that low‐Vp anomalies generally correspond to sedimentary basins and high‐Vp anomalies are related to exhumed metamorphic blocks in the study area. Relatively low Vp/Vs ratios in the upper crust indicate widely distributed quartz‐rich rocks. The low‐Vp zone from 0‐ to 10‐km depth (resolving depth limit) is spatially correlated with the Bangong‐Nujiang suture, possibly reflecting the compositional difference along the ophiolitic mélange belt accompanied by twin volcanic arcs from a double‐sided subduction. This interpretation is supported by relatively heterogeneous Qp values. This low‐velocity zone also implies relatively uniform stress and continuous deformation in the upper crust of central Tibet. The relatively weak materials in at least the upper crust would result in strain concentration and help the development of the conjugate strike‐slip fault system along the Bangong‐Nujiang suture.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-13
    Description: The Cenozoic convergence between India and Asia has created Earth's thickest crust in the Pamir‐Tibet Plateau by extreme crustal shortening. Here, we study the crustal structure of the Pamir and western Tian Shan, the adjacent margins of the Tajik, Tarim, and Ferghana Basins, and the Hindu Kush, using data collected by temporary seismic experiments. We derive, compare, and combine independent observations from P‐ and S‐receiver functions. The obtained Moho depth varies from ~40 km below the basins to a double‐normal thickness of 65–75 km underneath the Pamir and Hindu Kush. A Moho doublet—with the deeper interface down to a depth of ~90 km—coincides with the arc of intermediate‐depth seismicity underneath the Pamir, where Asian continental lower crust delaminates and rolls back. The crust beneath most of the Central and South Pamir has a low Vp/Vs ratio (〈1.70), suggesting a dominantly felsic composition, probably a result of delamination/foundering of the mafic rocks of the lower crust. Beneath the Cenozoic gneiss domes of the Central and South Pamir, which represent extensional core complexes, the Vp/Vs ratios are moderate to high (~1.75), consistent with the previously observed, mid‐crustal low velocity zones, implying the presence of crustal partial melts. Even higher crustal average Vp/Vs ratios up to 1.90 are found in the sedimentary basins and along the Main Pamir Thrust. The ratios along the latter — the active thrust front of the Pamir — may reflect fluid accumulations within a strongly fractured fault system.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...