GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AAAS (American Association for the Advancement of Science)  (1)
  • MDPI  (1)
  • Wiley  (1)
  • 2015-2019  (3)
  • 2018  (3)
  • 1
    Publication Date: 2021-03-18
    Description: This article presents gas hydrate experimental measurements for mixtures containing methane (CH4), carbon dioxide (CO2) and nitrogen (N2) with the aim to better understand the impact of water (H2O) on the phase equilibrium. Some of these phase equilibrium experiments were carried out with a very high water-to-gas ratio that shifts the gas hydrate dissociation points to higher pressures. This is due to the significantly different solubilities of the different guest molecules in liquid H2O. A second experiment focused on CH4-CO2 exchange between the hydrate and the vapor phases at moderate pressures. The results show a high retention of CO2 in the gas hydrate phase with small pressure variations within the first hours. However, for our system containing 10.2 g of H2O full conversion of the CH4 hydrate grains to CO2 hydrate is estimated to require 40 days. This delay is attributed to the shrinking core effect, where initially an outer layer of CO2-rich hydrate is formed that effectively slows down the further gas exchange between the vapor phase and the inner core of the CH4-rich hydrate grain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AAAS (American Association for the Advancement of Science)
    In:  Science, 359 (6371). pp. 34-36.
    Publication Date: 2021-02-08
    Description: Research and regulations must be integrated to protect seafloor biota from future mining impacts Summary: As human use of rare metals has diversified and risen with global development, metal ore deposits from the deep ocean floor are increasingly seen as an attractive future resource. Japan recently completed the first successful test for zinc extraction from the deep seabed, and the number of seafloor exploration licenses filed at the International Seabed Authority (ISA) has tripled in the past 5 years. Seafloor-mining equipment is being tested, and industrial-scale production in national waters could start in a few years. We call for integrated scientific studies of global metal resources, the fluxes and fates of metal uses, and the ecological footprints of mining on land and in the sea, to critically assess the risks of deep-sea mining and the chances for alternative technologies. Given the increasing scientific evidence for long-lasting impacts of mining on the abyssal environment, precautionary regulations for commercial deep-sea mining are essential to protect marine ecosystems and their biodiversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-10
    Description: Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used Magnetic Resonance Imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D Finite Element Method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...