GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-09-19
    Description: The dissolved organic phosphorus (DOP) pool in marine waters contains a variety of different compounds. Knowledge of the distribution and utilization of DOP by phyto- and bacterioplankton is limited, but critical to our understanding of the marine phosphorus cycle. In the Baltic Sea, detailed information about the composition of DOP and its turnover is lacking. This study reports the concentrations and uptake rates of DOP compounds, namely, adenosine triphosphate (dATP), deoxyribonucleic acid (dDNA), and phospholipids (dPL), in the Baltic Proper and in Finnish coastal waters in the summers of 2011 and 2012. Both areas differed in their dissolved inorganic phosphorus (DIP) concentrations (0.16 and 0.02–0.04 μM), in the C:P (123–178) and N:P (18–27) ratios, and in abundances of filamentous cyanobacteria and of autotrophic and heterotrophic picoplankton. The mean concentrations of dATP-P, dDNA-P, and dPL-P were 4.3–6.4, 0.05–0.12, and 1.9–6.8 nM, respectively, together contributing between 2.4 and 5.2% of the total DOP concentration. The concentrations of the compounds varied between and within the investigated regions and the distribution patterns of the individual components are not linked to each other. DIP was taken up at rates of 10.1–380.8 nM d-1. dATP-P and dDNA-P were consumed simultaneously with DIP at rates of 6.9–24.1 and 0.09–0.19 nM d-1, respectively, with the main proportion taken up by the size fraction 〈3 μm and with DIP to be the dominant source. Groups of hydrographical and biological parameters were identified in the multiple regression analysis to impact the concentrations and uptake rates. It points to the complexity of the regulation. Our results indicate that the investigated DOP compounds, particularly dATP-P, can make significant contributions to the P nutrition of microorganisms and their use seems to be not intertwined. Therefore, more detailed knowledge of all DOP components including variation of concentrations and the utilization is required to understand the roles of DOP in marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Paul, Allanah Joy; Achterberg, Eric Pieter; Bach, Lennart Thomas; Boxhammer, Tim; Czerny, Jan; Haunost, Mathias; Schulz, Kai Georg; Stuhr, Annegret; Riebesell, Ulf (2016): No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community. Biogeosciences, 13(13), 3901-3913, https://doi.org/10.5194/bg-13-3901-2016
    Publication Date: 2024-03-06
    Description: Nitrogen fixation by filamentous cyanobacteria supplies significant amounts of new nitrogen (N) to the Baltic Sea. This balances N loss processes such as denitrification and anammox, and forms an important N source supporting primary and secondary production in N-limited post-spring bloom plankton communities. Laboratory studies suggest that filamentous diazotrophic cyanobacteria growth and N2-fixation rates are sensitive to ocean acidification, with potential implications for new N supply to the Baltic Sea. In this study, our aim was to assess the effect of ocean acidification on diazotroph growth and activity as well as the contribution of diazotrophically fixed N to N supply in a natural plankton assemblage. We enclosed a natural plankton community in a summer season in the Baltic Sea near the entrance to the Gulf of Finland in six large-scale mesocosms (volume ∼ 55m3) and manipulated fCO2 over a range relevant for projected ocean acidification by the end of this century (average treatment fCO2: 365–1231µatm).
    Keywords: Aphanizomenon flos-aquae, biomass as carbon; Aphanizophyll; BIOACID; Biological Impacts of Ocean Acidification; Chaetoceros sp., biomass as carbon; DATE/TIME; Day of experiment; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Nitrogen fixation rate; Phase; Skeletonema marinoi; δ15N
    Type: Dataset
    Format: text/tab-separated-values, 1870 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...