GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ARK-XXIX/2.2; Bacteria; Bacterioplankton; Coomassie stainable particles; Coomassie stainable particles, equivalent spherical diameter; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; EG_IV; Event label; Flow cytometry; Hausgarten; Long-term Investigation at AWI-Hausgarten off Svalbard; Microscopy; North Greenland Sea; Optional event label; Polarstern; PS93/058-1; PS93/058-8; PS93.2; Transparent exopolymer particles; Transparent exopolymer particles, equivalent spherical diameter  (1)
  • Hausgarten; Long-term Investigation at AWI-Hausgarten off Svalbard  (1)
  • 2015-2019  (2)
  • 2017  (2)
Document type
Keywords
Publisher
Years
  • 2015-2019  (2)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Busch, Kathrin; Endres, Sonja; Iversen, Morten Hvitfeldt; Michels, Jan; Nöthig, Eva-Maria; Engel, Anja (2017): Bacterial Colonization and Vertical Distribution of Marine Gel Particles (TEP and CSP) in the Arctic Fram Strait. Frontiers in Marine Science, 4, https://doi.org/10.3389/fmars.2017.00166
    Publication Date: 2024-03-06
    Description: Gel particles - a class of abundant transparent organic particles - have increasingly gathered attention in marine research. Field studies on the bacterial colonization of marine gels however are still scarce. So far, most studies on respective particles have focused on the upper ocean, while little is known on their occurrence in the deep sea. Here, we report on the vertical distribution of the two most common gel particle types, which are polysaccharide-containing transparent exopolymer particles (TEP) and proteinaceous Coomassie stainable particles (CSP), as well as numbers of bacteria attached to gel particles throughout the water column, from the surface ocean down to the bathypelagial (〈 3,000 m). Our study was conducted in the Arctic Fram Strait during northern hemispheres' summer in 2015. Besides data on the bacterial colonization of the two gel particle types (TEP and CSP), we present bacterial densities on different gel particle size classes according to 12 different sampling depths at four sampling locations. Gel particles were frequently abundant at all sampled depths, and their concentrations decreased from the euphotic zone to the dark ocean. They were colonized by bacteria at all sampled water depths with risen importance at the deepest water layers, where fractions of bacteria attached to gel particles (%) increased within the total bacterial community. Due to the omnipresent bacterial colonization of gel particles at all sampled depths in our study, we presume that euphotic production of this type of organic matter may affect microbial species distribution within the whole water column in the Fram Strait, down to the deep sea. Our results raise the question if changes in the bacterial community composition and functioning on gel particles occur over depth, which may affect microbial respiration and remineralization rates of respective particles in different water layers.
    Keywords: Hausgarten; Long-term Investigation at AWI-Hausgarten off Svalbard
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-01
    Keywords: ARK-XXIX/2.2; Bacteria; Bacterioplankton; Coomassie stainable particles; Coomassie stainable particles, equivalent spherical diameter; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; EG_IV; Event label; Flow cytometry; Hausgarten; Long-term Investigation at AWI-Hausgarten off Svalbard; Microscopy; North Greenland Sea; Optional event label; Polarstern; PS93/058-1; PS93/058-8; PS93.2; Transparent exopolymer particles; Transparent exopolymer particles, equivalent spherical diameter
    Type: Dataset
    Format: text/tab-separated-values, 132 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...