GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (2)
  • 2015-2019  (2)
  • 2017  (2)
Material
Publisher
  • American Meteorological Society  (2)
Language
Years
  • 2015-2019  (2)
Year
  • 2017  (2)
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of Climate Vol. 30, No. 13 ( 2017-07), p. 5097-5117
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 13 ( 2017-07), p. 5097-5117
    Abstract: Low-frequency sea level variations with periods longer than interannual time scales have been receiving much attention recently, with the aim of distinguishing the anthropogenic regional sea level change signal from the natural fluctuations. Based on the available sea level products, this study finds that the dominant low-frequency sea level mode in the Pacific basin has both quasi-decadal variations and a multidecadal trend reversal in the early 1990s. The dominant sea level modes on these two time scales have different tropical structures: a west–east seesaw in the tropical Pacific on the multidecadal time scale and a dipole between the western and central tropical Pacific on the quasi-decadal time scale. These two sea level modes in the Pacific basin are closely related to the ENSO-like low-frequency climate variability on respective time scales but feature distinct surface wind forcing patterns and subbasin climate processes. The multidecadal sea level mode is associated with the Pacific decadal oscillation (PDO) and Aleutian low variations in the North Pacific and tropical Pacific sea surface temperature anomalies toward the eastern basin, while the quasi-decadal sea level mode is accompanied by tropical Pacific sea surface temperature anomalies centered in the central basin along with the North Pacific part, which resembles the North Pacific Oscillation (NPO) and its oceanic expressions [i.e., the North Pacific Gyre Oscillation (NPGO) and the Victoria mode] . The authors further conclude that the ENSO-like low-frequency variability, which has dominant influences on the Pacific sea level and climate, comprises at least two distinct modes with different spatial structures on quasi-decadal and multidecadal time scales, respectively.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 21 ( 2017-11), p. 8539-8563
    Abstract: Sea level change is one of the major consequences of climate change and is projected to affect coastal communities around the world. Here, global mean sea level (GMSL) change estimated by 12 climate models from phase 5 of the World Climate Research Programme’s Climate Model Intercomparison Project (CMIP5) is compared to observational estimates for the period 1900–2015. Observed and simulated individual contributions to GMSL change (thermal expansion, glacier mass change, ice sheet mass change, landwater storage change) are analyzed and compared to observed GMSL change over the period 1900–2007 using tide gauge reconstructions, and over the period 1993–2015 using satellite altimetry estimates. The model-simulated contributions explain 50% ± 30% (uncertainties 1.65 σ unless indicated otherwise) of the mean observed change from 1901–20 to 1988–2007. Based on attributable biases between observations and models, a number of corrections are proposed, which result in an improved explanation of 75% ± 38% of the observed change. For the satellite era (from 1993–97 to 2011–15) an improved budget closure of 102% ± 33% is found (105% ± 35% when including the proposed bias corrections). Simulated decadal trends increase over the twentieth century, both in the thermal expansion and the combined mass contributions (glaciers, ice sheets, and landwater storage). The mass components explain the majority of sea level rise over the twentieth century, but the thermal expansion has increasingly contributed to sea level rise, starting from 1910 onward and in 2015 accounting for 46% of the total simulated sea level change.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...